RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Systemic and Adipose Tissue Redox Status in Sprague-Dawley Rats Fed Normal- and High-Fat Diets Supplemented with Lycopene

        Katelyn E. Senkus,Libo Tan,Kristi M. Crowe-White 한국식품영양과학회 2021 Journal of medicinal food Vol.24 No.4

        Dietary patterns high in fat influence local and systemic oxidative stress through adipose tissue (AT) accrual and increased reactive oxygen species generation. Lycopene, a carotenoid with antioxidant functionality, may mitigate excess oxidative stress, yet the lipophilic nature of this compound may limit its functionality if sequestered by AT. Thus, it is critical to elucidate whether lycopene's efficacy is limited based on adiposity. The purpose of this study was to investigate the influence of lycopene-supplemented normal- and high-fat diets on systemic and AT redox status. Male Sprague-Dawley rats (n = 18) were fed a 30% normal-fat (NFD) or 60% high-fat (HFD) purified diet supplemented with 100 mg of lycopene/day. Body weight and visceral AT mass, as well as serum and AT lycopene, lipid peroxides, and antioxidant capacity (AC), were assessed after 3, 7, and 10 weeks of supplementation. At week 10, AT mass was significantly higher (P = .028) in the HFD group, yet there were no significant differences in serum or AT lycopene concentrations or lipid peroxides between groups. Additionally, AT in the HFD group exhibited significantly greater lipophilic AC (27.6% higher, P = .031). Results suggest that excess adiposity did not negatively influence circulating lycopene, nor did it limit its antioxidant functionality.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼