RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Load-related dynamic behaviors of a helical gear pair with tooth flank errors

        Lehao Chang,Xuepeng Cao,Zhaoxia He,Geng Liu 대한기계학회 2018 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.32 No.4

        This study focused on the effects of tooth manufacturing errors (MEs) on the dynamic behaviors of a helical geared system. The composite mesh error is introduced and calculated, which is taken as error excitation in the dynamic model. A combined finite element method (FEM) and analytical contact model is used to investigate the interaction of mesh stiffness and MEs. The dynamic model is developed based on the finite element method and its effectiveness has been verified. By introducing stiffness excitation and error excitation, the effects of mesh stiffness and MEs can be easily distinguished in the total excitation. The influence degrees of these two factors are obtained at different torque levels by simulating the quasi-static and dynamic responses of the system. The results show that the composite mesh error will have great changes under light load conditions, and larger dynamic factors as well as decreased resonance speed will be brought. The excitation produced by manufacturing errors is dominate in the total vibration excitation in a light loading, while the excitation produced by mesh stiffness is becoming the dominating one in a heavy loading.

      • KCI등재

        A hybrid finite element and analytical model for determining the mesh stiffness of internal gear pairs

        Shuo Feng,Lehao Chang,Zhaoxia He 대한기계학회 2020 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.34 No.6

        This work developed an efficient model for calculating the mesh stiffness of spur/helical internal gear pairs by combining the finite element method (FEM) and analytical formula. The tooth global deformation is obtained by separation of the deformation of a full finite element model and a partial model, and the local contact deformation is derived by an analytical line contact formula based on Hertz contact theory. The transmission error and mesh stiffness of the gear pair can be acquired after solving the nonlinear contact equilibrium equations. Compared with the conventional FEM, the proposed method has much smaller computational consumption. Furthermore, it also overcomes the disadvantage that the analytical method is difficult to consider different ring gear structures. Then the influences of ring thicknesses and the number of support pins of the ring gear on the mesh stiffness are discussed. The results show that the ring flexibility will change the amplitude-frequency components of the mesh stiffness a lot.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼