RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Magnetic Resonance Imaging Assessment of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia in Children

        Shi-Joon Yoo,Lars Grosse-Wortmann,Robert M. Hamilton 대한심장학회 2010 Korean Circulation Journal Vol.40 No.8

        Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a genetically determined disease that progresses continuously from conception and throughout life. ARVC/D manifests predominantly in young adulthood. Early identification of the concealed cases in childhood is of utmost importance for the prevention of sudden cardiac death later in life. Magnetic resonance imaging (MRI) is routinely requested in patients with a confirmed or suspected diagnosis of ARVC/D and in family members of the patients with ARVC/D. Although the utility of MRI in the assessment of ARVC/D is well recognized in adults, MRI is a low-yield test in children as the anatomical, histological, and functional changes are frequently subtle or not present in the early phase of the disease. MRI findings of ARVC/D include morphologic changes such as right ventricular dilatation, wall thinning, and aneurismal outpouchings, as well as abnormal tissue characteristics such as myocardial fibrosis and fatty infiltration, and functional abnormalities such as global ventricular dysfunction and regional wall motion abnormalities. Among these findings, regional wall motion abnormalities are the most reliable MRI findings both in children and adults, while myocardial fibrosis and fat infiltration are rarely seen in children. Therefore, an MRI protocol should be tailored according to the patient’s age and compliance, as well as the presence of other findings, instead of using the protocol that is used for adults. We propose that MRI in children with ARVC/D should focus on the detection of regional wall motion abnormalities and global ventricular function by using a cine imaging sequence and that the sequences for myocardial fat and late gadolinium enhancement of the myocardium are reserved for those who show abnormal findings at cine imaging. Importantly, MRI should be performed and interpreted by experienced examiners to reduce the number of false positive and false negative readings.

      • KCI등재

        Magnetic Resonance Imaging Assessment of Blood Flow Distribution in Fenestrated and Completed Fontan Circulation with Special Emphasis on Abdominal Blood Flow

        Pablo Caro-Dominguez,Rajiv Chaturvedi,Govind Chavhan,Simon C. Ling,Deane Yim,Prashob Porayette,Christopher Z Lam,Tae Kyoung Kim,Mike Seed,Lars Grosse-Wortmann,Shi-Joon Yoo 대한영상의학회 2019 Korean Journal of Radiology Vol.20 No.7

        Objective: To investigate the regional flow distribution in patients with Fontan circulation by using magnetic resonance imaging (MRI). Materials and Methods: We identified 39 children (18 females and 21 males; mean age, 9.3 years; age range, 3.3–17.0 years) with Fontan circulation in whom flow volumes across the thoracic and abdominal arteries and veins were measured by using MRI. The patients were divided into three groups: fenestrated Fontan circulation group with MRI performed under general anesthesia (GA) (Group 1, 15 patients; average age, 5.9 years), completed Fontan circulation group with MRI performed under GA (Group 2, 6 patients; average age, 8.7 years), and completed Fontan circulation group with MRI performed without GA (Group 3, 18 patients; average age, 12.5 years). The patient data were compared with the reference ranges in healthy controls. Results: In comparison with the controls, Group 1 showed normal cardiac output (3.92 ± 0.40 vs. 3.72 ± 0.69 L/min/m2, p = 0.30), while Group 3 showed decreased cardiac output (3.24 ± 0.71 vs. 3.96 ± 0.64 L/min/m2, p = 0.003). Groups 1 and 3 showed reduced abdominal flow (1.21 ± 0.28 vs. 2.37 ± 0.45 L/min/m2, p < 0.001 and 1.89 ± 0.39 vs. 2.64 ± 0.38 L/min/m2, p < 0.001, respectively), which was mainly due to the diversion of the cardiac output to the aortopulmonary collaterals in Group 1 and the reduced cardiac output in Group 3. Superior mesenteric and portal venous flows were more severely reduced in Group 3 than in Group 1 (ratios between the flow volumes of the patients and healthy controls was 0.26 and 0.37 in Group 3 and 0.63 and 0.53 in Group 1, respectively). Hepatic arterial flow was decreased in Group 1 (0.11 ± 0.22 vs. 0.34 ± 0.38 L/min/m2, p = 0.04) and markedly increased in Group 3 (0.38 ± 0.22 vs. -0.08 ± 0.29 L/min/m2, p < 0.0001). Group 2 showed a mixture of the patterns seen in Groups 1 and 3. Conclusion: Fontan circulation is associated with reduced abdominal flow, which can be attributed to reduced cardiac output and portal venous return in completed Fontan circulation, and diversion of the cardiac output to the aortopulmonary collaterals in fenestrated Fontan circulation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼