RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIE

        Adsorption Properties of MFM-400 and MFM-401 with CO<sub>2</sub> and Hydrocarbons: Selectivity Derived from Directed Supramolecular Interactions

        Ibarra, Ilich A.,Mace, Amber,Yang, Sihai,Sun, Junliang,Lee, Sukyung,Chang, Jong-San,Laaksonen, Aatto,Schrö,der, Martin,Zou, Xiaodong American Chemical Society 2016 Inorganic Chemistry Vol.55 No.15

        <P>([Sc-2(OH)(2)(BPTC)]) (H4BPTC = biphenyl-3,3',5,5'-tetracarboxylit acid), MFM-400 (MFM = Manchester Framework Material; previously designated NOTT), and ([Sc(OH)-(TDA)]) (H(2)TDA = thiophene-2,5-dicarboxylic acid), MFM-401, both show xelective and, reversible capture of CO2. In particular, MFM-400 exhibits a reasonably high CO2 uptake at low pressures and competitive CO2/N-2 selectivity coupled to a moderate isosteric heat of adsorption (Q(st)) for CO2 (29.5 kJ mol(-1)) at zero coverage, thus affording a facile uptake release process. Grand canonical Monte Carlo (GCMC) and density functional theory (DFT) computational analyses of CO2 uptake in both materials confirmed preferential adsorption sites consistent with the higher CO2 uptake observed experimentally for MFM-400 over MFM-401 at low pressures. For MFM-400, the Sc-OH group participates in moderate interactions with CO2 (Q(st) = 33.5 kJ mol(-1)), and these are complemented by weak hydrogen-bonding interactions (O center dot center dot center dot H-C = 3.10-3.22 angstrom) from four surrounding aromatic -CH groups. In the case of MFM-401, adsorption is provided by cooperative interactions of CO2 with the Sc-OH group and one C-H group. The binding energies obtained by DFT analysis for the adsorption sites for both materials correlate well with the observed moderate isosteric heats of adsorption for CO2. GCMC simulations for both materials confirmed higher uptake of EtOH compared with nonpolar vapors of toluene and. cydohexane. This is in good Correlation with the experimental data, and DFT analysis confirmed the formation of a strong hydrogen bond between EtOH and the hydrogen atom of the hydroxyl group of the MFM-400 and MFM-401 framework (FIAT) with H-O-EtOH center dot center dot center dot H-O-FW distances of 1.77 arid 1.75 angstrom, respectively. In addition, the accessible regeneration of MFM-400 and MFM-401 and release of CO2 potentially provide minimal economic and environmental penalties.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼