RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Statistical evaluation of a liquid desiccant dehumidification system using RSM and theoretical study based on the effectiveness NTU model

        L. Omidvar Langroudi,H. Pahlavanzadeh,S.M. Mousavi 한국공업화학회 2014 Journal of Industrial and Engineering Chemistry Vol.20 No.5

        In the present study the performance of an air dehumidifier using lithium bromide (LiBr) as a desiccant was investigated. Response surface methodology (RSM) was used to assess individual and interactive effects of the six main factors (velocity, temperature and humidity of air, flow rate, temperature and concentration of desiccant) on dehumidification mass rate. A reduced quadratic statistical model was derived to predict dehumidification mass rate. The maximum dehumidification mass rate was obtained 0.154 g/s under the optimal conditions of an air velocity of 4.1 m/s, desiccant flow rate of 0.035 kg/s, air humidity ratio of 0.0185 kg/kg, desiccant concentration of 0.48 kg/kg, air temperature of 29.5 ℃, and desiccant temperature of 21.8 ℃. The effectiveness number of transfer unit (NTU) model was employed to describe the coupled heat and mass transfer. The results of the model and the experimental data show good agreement. Dimensionless mass and heat transfer coefficients correlations are proposed; the average absolute differences between the predicted values and the experimental findings for Sh and Nu numbers were calculated as 2.14% and 5.27%, with the discrepancies mainly within ±9% and ±13%, respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼