RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Naringenin Increases Insulin Sensitivity and Metabolic Rate: A Case Study

        Navya Murugesan,Kaylee Woodard,Rahul Ramaraju,Frank L. Greenway,Ann A. Coulter,Candida J. Rebello 한국식품영양과학회 2020 Journal of medicinal food Vol.23 No.3

        Our studies in primary human adipocytes show that naringenin, a citrus flavonoid, increases oxygen consumption rate and gene expression of uncoupling protein 1 (UCP1), glucose transporter type 4, and carnitine palmitoyltransferase 1β (CPT1β). We investigated the safety of naringenin, its effects on metabolic rate, and blood glucose and insulin responses in a single female subject with diabetes. The subject ingested 150 mg naringenin from an extract of whole oranges standardized to 28% naringenin three times/day for 8 weeks, and maintained her usual food intake. Body weight, resting metabolic rate, respiratory quotient, and blood chemistry panel including glucose, insulin, and safety markers were measured at baseline and after 8 weeks. Adverse events were evaluated every 2 weeks. We also examined the involvement of peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ (PPARγ), protein kinase A (PKA), and protein kinase G (PKG) in the response of human adipocytes to naringenin treatment. Compared to baseline, the body weight decreased by 2.3 kg. The metabolic rate peaked at 3.5% above baseline at 1 h, but there was no change in the respiratory quotient. Compared to baseline, insulin decreased by 18%, but the change in glucose was not clinically significant. Other blood safety markers were within their reference ranges, and there were no adverse events. UCP1 and CPT1β mRNA expression was reduced by inhibitors of PPARα and PPARγ, but there was no effect of PKA or PKG inhibition. We conclude that naringenin supplementation is safe in humans, reduces body weight and insulin resistance, and increases metabolic rate by PPARα and PPARγ activation. The effects of naringenin on energy expenditure and insulin sensitivity warrant investigation in a randomized controlled clinical trial.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼