RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Development of a Treatment System for Decommissioning Radwaste

        Junhyuck Im,Dooseong Hwang,Junhee Lee,Minyoung Kang,Geun-Ho Kim 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        During the operation or decommission of nuclear facilities, a large amount of dry active waste and cable waste with various shape and material is generated. Most of these wastes have almost no radioactive contamination and can be disposed of by incineration, landfill, recycling, etc. under clearance regulation. For clearance of radioactive waste, it is necessary to verify the characteristics of radiological contamination and prove that it meets the criteria for clearance regulation. According to the domestic clearance regulation, if it is difficult to measure radioactivity of wastes due to their surface condition using direct or indirect measurement methods, representative samples should be collected and analyzed for radioactivity. When sampling, it is desirable to collect samples of about 1 kg that can represent waste contamination per 200 kg or per 1 m2, and the homogeneity of the samples also should be demonstrated. However, in the case of dry active wastes, it is very difficult to prove the homogeneity of the samples because of surface shapes and conditions of the wastes. In particular, considering cable waste generated during the decommission, it is hardly capable to prove the representativeness of the sample, even though the inner shell of the covering material and the copper wire are almost uncontaminated. In this study, we show the development of a treatment system that makes it easy to prove the representativeness of samples when disposing of dry active waste or cable waste generated in nuclear facilities. The treatment device is designed in such a way that it has different storage unit and cutting unit suitable for the material characteristics of each waste type (soft, hard and cable), and therefore optimizes the efficiency of the shredding or cutting process. In addition, it is expected that the work efficiency in the radioactive treatment site with a narrow area can also be improved by providing a moving part on the device.

      • A Development of the Quantitative Analysis Method for Np in Solutions by Various Radiometric Methods and Absorption Spectroscopy

        Junhyuck Kim,Hye-Ryun Cho,Jae-Il Park 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        Neptunium (Np) is one of the daughter elements included in the decay chain of Pu. The quantitative analysis of Np isotopes is required for radioactive waste characterization, research on actinide chemistry, etc. Np-237 has a long half-life (2.144 million years), but its daughter Pa-233 has a relatively short half-life (26.975 days). For this reason, after a sufficient time elapses following the chemical preparation process of the analyte, the two nuclides are in radiation equilibrium in the sample. Np-237 emits alpha-rays while Pa-233 emits beta-rays. Both nuclides also emit gamma- and X-rays. In this study, alpha-rays were measured using liquid scintillation counting (LSC) method and alpha spectrometry. Gamma-spectrometry with a HPGe detector was used for the analysis of gammaand X-rays. In addition, we compared the radiometric results with quantitative analysis of Np using UV-Vis absorption spectrometry. The LSC method and the HPGe gamma-spectroscopy do not require extensive sample preparation procedures. Alpha spectroscopy requires a standard material spiking, separation by coprecipitation, and disk-type sample preparation procedure to obtain measurement efficiency and recovery factor. A reference material sample with a concentration of 5.8 mM was analyzed by the four analysis methods, and all of the measured results agreed well within a difference level of 4%.

      • A Case Study on Clearance Dose Assessment of Radioactive Waste at KRR 1&2

        Junhyuck Im,Dooseong Hwang,Junhee Lee,Minyoung Kang,Geun-Ho Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        The decommissioning of Korea Research Reactor Units 1 and 2 (KRR 1&2), the first research reactors in South Korea, began in 1997 and the decommissioning status is currently proceeding with phase 3. It is expected that more than 5,000 tons of dismantled wastes will be generated as the contaminated building is demolished. Since these dismantled wastes must be disposed of in an efficient method considering economic feasibility, it is desirable to clearance extremely low-level wastes whose contamination is so minimal that the radiological risk is negligible. In Korea, in order to approve the clearance of radioactive waste, it must be proven that the nuclide concentration standards are met or that the dose to individuals and collectives is below the allowable dose value. At the KRR 1&2 decommissioning site, dismantled wastes have been steadily being disposed of through clearance procedure since 2021. Clearance was approved by the Korean Institute of Nuclear Safety (KINS) for one case of concrete waste in 2021 and two cases of metal waste in 2022. In 2023, the clearance of metal waste and asbestos waste has been approved so far, and in particular, this is the first case in Korea for asbestos waste. In this study, we compared the dose assessment methods and results of clearance wastes at the KRR 1&2 decommissioning site from 2021 to present. Dose assessment was conducted by applying the landfill scenario for concrete and asbestos and the recycling scenario for metal waste. The calculation codes used were RESRAD-onsite 7.2 and RESRAD-recycle 3.10. The dose conversion factors (DCF) for each age group (infant, 1y, 5y, 10y, 15y, adult) of the target nuclide used the values presented in ICRP-72, and in particular, geo-hydrological data of the actual landfill site was used as an input factor when evaluating landfill scenarios. As a result of the dose assessment, when landfilling concrete wastes in 2020, the personal dose and collective dose were evaluated the most at 2.80E+00 μSv/y and 4.83E-02 man·Sv/y, respectively.

      • KCI등재

        A Study on the Relationship between Green Marketing Strategy and CSR Policy

        Junhyuck SUH 한국유통과학회 2023 The Journal of Industrial Distribution & Business( Vol.14 No.2

        Purpose: This research examines the relationship between green marketing strategy and CSR policy and identifies how companies can leverage this relationship to attract green customers. The conceptual model for this study shows the relevance of companies adopting both green marketing strategies and CSR policies to show how committed they are regarding environmental sustainability and fulfill their responsibilities towards various stakeholders. Research design, data and methodology: This research has conducted the literature content approach and the key measures used for this study were based on mostly peer-reviewed journal articles. Those studies already indicated the high degree of reliability and validity. Consequently, the current researcher removed conference papers into the analysis. Results: This research provides brief suggestions for companies to incorporate the findings of this study into their green marketing strategies and CSR policies. Companies that align their green marketing strategies with their CSR policies, and CSR policies with their customers' values, are more likely to attract environmentally conscious customers and increase their loyalty. Conclusions: This research concludes that there exists a positive relationship between green marketing strategy and CSR policy and the outcomes of this research add to the body of knowledge on how these two concepts can be integrated to achieve business and societal benefits.

      • Study on Thermal Stability and Structural Changes of the Sr-exhanged Natrolite

        Junhyuck Im,Jaewoo Jung,Kiho Yang,Donghoon Seoung,Yongmoon Lee 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.2

        The radioactive Sr-90, which is formed from beta decay, is well known as one of the most commonly detected nuclides in radioactive waste. In 2015, it was reported that Sr-90 was observed in some soil and metal wastes among the 516 drums of radioactive waste transferred from the decommissioning site of the Korea Research Reactor (in Seoul) to the disposal site (in Gyeongju). Decontamination and sequestration of radionuclides, including Sr, from nuclear waste is important because they are hazardous and harmful to the ecological environment. Immobilization of these nuclides using a zeolite framework is suitable and simple method that has been widely studied. Therefore, it is still necessary to continuously explore the thermal stability of various zeolites and environmental changes around adsorbed cations in zeolite pore for effective immobilization of these radionuclides. In this study, we observed the thermal stability in fully Sr-exchanged natrolite (Sr-NAT), one of small-pore zeolite, from room temperature to 350°C using the in-situ synchrotron X-ray powder diffraction and thermogravimetric (TGA) analysis. In addition, we investigated the structural changes in Sr-NAT during temperature increase by Rietveld analysis. Sr-NAT exhibited apparent zero thermal expansions (ZTE) with the thermal expansion coefficients of -3(1) × 10-6 at the initial stage of increasing the temperature due to dehydration process. In the section from 250°C to 300°C, a phenomenon like negative thermal expansion (NTE) occurs in which the unit cell volume of Sr-NAT decreases despite the increase in temperature. Sr-NAT maintained well its crystallinity up to 350°C, and it became amorphous at 350°C. In this study, we provide a fundamental understanding of the structural changes and thermal stability mechanism of Sr-exchaged zeolite natrolite with increasing temperature.

      • Development of Characterization Database Management System for Radioactive Waste Disposal

        Junhyuck Im,Dooseong Hwang,Junhee Lee,Minyoung Kang,Sam Hee Han,Sung Jin Joo,Geun-Ho Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The decommissioning of Korea Research Reactor Units 1 and 2 (KRR-1&2), the first research reactors in South Korea, began in 1997. Approximately 5,000 tons of waste will be generated when the contaminated buildings are demolished. Various types of radioactive waste are generated in large quantities during the operation and decommissioning of nuclear facilities, and in order to dispose of them in a disposal facility, it is necessary to physico-chemically characterize the radioactive waste. The need to transparently and clearly conduct and manage radioactive waste characterization methods and results in accordance with relevant laws, regulations, acceptance standards is emerging. For radioactive waste characterization information, all information must be provided to the disposal facility by measuring and testing the physical, chemical, and radiological characteristics and inputting related documents. At this time, field workers have the inconvenience of performing computerized work after manually inputting radioactive waste characterization information, and there is always a possibility that human errors may occur during manual input. Furthermore, when disposing of radioactive waste, the production of the documents necessary for disposal is also done manually, resulting in the aforementioned human error and very low production efficiency of numerous documents. In addition, as quality control is applied to the entire process from generation to treatment and disposal of radioactive waste, it is necessary to physically protect data and investigate data quality in order to manage the history information of radioactive waste produced in computerized work. In this study, we develop a system that can directly compute the radioactive waste characterization information at the field site where the test and measurement are performed, protect the stored radioactive waste characterization data, and provide a system that can secure reliability.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼