RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigations on Predictions and Characteristics of Flow Field in the Pipelines of Chillers for Measured Locations of Ultrasonic Flowmeters by CFD Approach

        Min-Lun Chai,Yu-Hsuan Chang,Chih-Hung Lin,Jin-Cyuan Tsai,Jhen-You Chin,Ratna Nur Inten 대한설비공학회 2021 International Journal Of Air-Conditioning and Refr Vol.29 No.2

        The flow velocity profiles in most of the central air-conditioning pipelines are, in general, not fully developed flow and difficult to obtain the accurate flow rates by flowmeters, which are used for measuring average velocity. Especially for being at the outlet of an elbow, the accuracy of flow rate by measurement is quite low. Therefore, there are some limitations for measurements of flow rate and velocity profile by the present flow measuring technologies. The objective of this study was to establish an approach on accurate predictions of velocity profiles at different measured locations of central air-conditioning pipelines for nonuniform flow measurements by simulations of computational Fluid Dynamics (CFD). All the velocity profiles will integrate as a database for predictions by neural network algorithm for smart measurement further. In the present work initially, international experiments were employed to validate the accuracy of CFD approach. The calculations were carried out by different turbulence models. The results compared with the experimental data by Realizable k-ε turbulence model with less computing resources have great agreements. Realizable k-ε turbulence model was, therefore, determined for the predictions of central air-conditioning pipeline. According to various pipings and pipe sizes, the results for three cases show that the velocity profiles in the pipelines would not be symmetrical and has strong secondary flow. Therefore, all of the flow profiles would be integrated and analyzed as a database and assist to get accurately the measured locations of ultrasonic flowmeters. Further, this database will be combined with algorithm of artificial neural network for smart predictions.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼