RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Study on damage detection software of beam-like structures

        Xiang, Jiawei,Jiang, Zhansi,Wang, Yanxue,Chen, Xuefeng Techno-Press 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.39 No.1

        A simply structural damage detection software is developed to identification damage in beams. According to linear fracture mechanics theory, the localized additional flexibility in damage vicinity can be represented by a lumped parameter element. The damaged beam is modeled by wavelet-based elements to gain the first three frequencies precisely. The first three frequencies influencing functions of damage location and depth are approximated by means of surface-fitting techniques to gain damage detection database of forward problem. Then the first three measured natural frequencies are employed as inputs to solve inverse problem and the intersection of the three frequencies contour lines predict the damage location and depth. The DLL (Dynamic Linkable Library) file of damage detection method is coded by C++ and the corresponding interface of software is coded by virtual instrument software LabVIEW. Finally, the software is tested on beams and shafts in engineering. It is shown that the presented software can be used in actual engineering structures.

      • SCIESCOPUS

        A simple method to detect cracks in beam-like structures

        Xiang, Jiawei,Matsumoto, Toshiro,Long, Jiangqi,Wang, Yanxue,Jiang, Zhansi Techno-Press 2012 Smart Structures and Systems, An International Jou Vol.9 No.4

        This study suggests a simple two-step method for structural vibration-based health monitoring for beam-like structures which only utilizes mode shape curvature and few natural frequencies of the structures in order to detect and localize cracks. The method is firstly based on the application of wavelet transform to detect crack locations from mode shape curvature. Then particle swarm optimization is applied to evaluate crack depth. As the Rayleigh quotient is introduced to estimate natural frequencies of cracked beams, the relationship of natural frequencies and crack depths can be easily obtained with only a simple formula. The method is demonstrated and validated numerically, using the numerical examples (cantilever beam and simply supported shaft) in the literature, and experimentally for a cantilever beam. Our results show that mode shape curvature and few estimated natural frequencies can be used to detect crack locations and depths precisely even under a certain level of noise. The method can be extended for health monitoring of other more complicated structures.

      • SCIESCOPUS

        Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval

        Xiang, Jiawei,He, Zhengjia,He, Yumin,Chen, Xuefeng Techno-Press 2007 Structural Engineering and Mechanics, An Int'l Jou Vol.25 No.5

        A finite element method (FEM) of B-spline wavelet on the interval (BSWI) is used in this paper to solve the static and vibration problems of thin plate. Instead of traditional polynomial interpolation, the scaling functions of two-dimensional tensor product BSWI are employed to construct the transverse displacements field. The method combines the accuracy of B-spline functions approximation and various basis functions for structural analysis. Some numerical examples are studied to demonstrate the proposed method and the numerical results presented are in good agreement with the solutions of other methods.

      • SCIESCOPUS

        A new method to detect cracks in plate-like structures with though-thickness cracks

        Xiang, Jiawei,Nackenhorst, Udo,Wang, Yanxue,Jiang, Yongying,Gao, Haifeng,He, Yumin Techno-Press 2014 Smart Structures and Systems, An International Jou Vol.14 No.3

        In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

      • KCI등재

        Crack identification in short shafts using wavelet-based element and neural networks

        Jiawei Xiang,Xuefeng Chen,Lianfa Yang 국제구조공학회 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.33 No.5

        The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by nondimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.

      • KCI등재

        Study on damage detection software of beam-like structures

        Jiawei Xiang,Zhansi Jiang,Yanxue Wang,Xuefeng Chen 국제구조공학회 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.39 No.1

        A simply structural damage detection software is developed to identification damage in beams. According to linear fracture mechanics theory, the localized additional flexibility in damage vicinity can be represented by a lumped parameter element. The damaged beam is modeled by waveletbased elements to gain the first three frequencies precisely. The first three frequencies influencing functions of damage location and depth are approximated by means of surface-fitting techniques to gain damage detection database of forward problem. Then the first three measured natural frequencies are employed as inputs to solve inverse problem and the intersection of the three frequencies contour lines predict the damage location and depth. The DLL (Dynamic Linkable Library) file of damage detection method is coded by C++ and the corresponding interface of software is coded by virtual instrument software LabVIEW. Finally, the software is tested on beams and shafts in engineering. It is shown that the presented software can be used in actual engineering structures.

      • KCI등재후보

        A simple method to detect cracks in beam-like structures

        Jiawei Xiang,Toshiro Matsumoto,Jiangqi Long,Yanxue Wang,Zhansi Jiang 국제구조공학회 2012 Smart Structures and Systems, An International Jou Vol.9 No.4

        This study suggests a simple two-step method for structural vibration-based health monitoring for beam-like structures which only utilizes mode shape curvature and few natural frequencies of the structures in order to detect and localize cracks. The method is firstly based on the application of wavelet transform to detect crack locations from mode shape curvature. Then particle swarm optimization is applied to evaluate crack depth. As the Rayleigh quotient is introduced to estimate natural frequencies of cracked beams, the relationship of natural frequencies and crack depths can be easily obtained with only a simple formula. The method is demonstrated and validated numerically, using the numerical examples (cantilever beam and simply supported shaft) in the literature, and experimentally for a cantilever beam. Our results show that mode shape curvature and few estimated natural frequencies can be used to detect crack locations and depths precisely even under a certain level of noise. The method can be extended for health monitoring of other more complicated structures.

      • SCIESCOPUS

        Crack identification in short shafts using wavelet-based element and neural networks

        Xiang, Jiawei,Chen, Xuefeng,Yang, Lianfa Techno-Press 2009 Structural Engineering and Mechanics, An Int'l Jou Vol.33 No.5

        The rotating Rayleigh-Timoshenko beam element based on B-spline wavelet on the interval (BSWI) is constructed to discrete short shaft and stiffness disc. The crack is represented by non-dimensional linear spring using linear fracture mechanics theory. The wavelet-based finite element model of rotor system is constructed to solve the first three natural frequencies functions of normalized crack location and depth. The normalized crack location, normalized crack depth and the first three natural frequencies are then employed as the training samples to achieve the neural networks for crack diagnosis. Measured natural frequencies are served as inputs of the trained neural networks and the normalized crack location and depth can be identified. The experimental results of fatigue crack in short shaft is also given.

      • KCI등재

        A new method to detect cracks in plate-like structures with though-thickness cracks

        Jiawei Xiang,Yongying Jiang,Udo Nackenhorst,Yanxue Wang,Haifeng Gao,Yumin He 국제구조공학회 2014 Smart Structures and Systems, An International Jou Vol.14 No.3

        In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

      • SCIESCOPUS

        Mechanical parameters detection in stepped shafts using the FEM based IET

        Song, Wenlei,Xiang, Jiawei,Zhong, Yongteng Techno-Press 2017 Smart Structures and Systems, An International Jou Vol.20 No.4

        This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼