RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Flexible Transmission Expansion Planning for Integrating Wind Power Based on Wind Power Distribution Characteristics

        Jianxue Wang,Ruogu Wang,Pingliang Zeng,Shutang You,Yunhao Li,Yao Zhang 대한전기학회 2015 Journal of Electrical Engineering & Technology Vol.10 No.3

        Traditional transmission planning usually caters for rated wind power output. Due to the low occurrence probability of nominal capacity of wind power and huge investment in transmission, these planning methods will leads to low utilization rates of transmission lines and poor economic efficiency. This paper provides a novel transmission expansion planning method for integrating largescale wind power. The wind power distribution characteristics of large-scale wind power output and its impact on transmission planning are analyzed. Based on the wind power distribution characteristics, this paper proposes a flexible and economic transmission planning model which saves substantial transmission investment through spilling a small amount of peak output of wind power. A methodology based on Benders decomposition is used to solve the model. The applicability and effectiveness of the model and algorithm are verified through a numerical case.

      • SCIESCOPUSKCI등재

        Flexible Transmission Expansion Planning for Integrating Wind Power Based on Wind Power Distribution Characteristics

        Wang, Jianxue,Wang, Ruogu,Zeng, Pingliang,You, Shutang,Li, Yunhao,Zhang, Yao The Korean Institute of Electrical Engineers 2015 Journal of Electrical Engineering & Technology Vol.10 No.3

        Traditional transmission planning usually caters for rated wind power output. Due to the low occurrence probability of nominal capacity of wind power and huge investment in transmission, these planning methods will leads to low utilization rates of transmission lines and poor economic efficiency. This paper provides a novel transmission expansion planning method for integrating large-scale wind power. The wind power distribution characteristics of large-scale wind power output and its impact on transmission planning are analyzed. Based on the wind power distribution characteristics, this paper proposes a flexible and economic transmission planning model which saves substantial transmission investment through spilling a small amount of peak output of wind power. A methodology based on Benders decomposition is used to solve the model. The applicability and effectiveness of the model and algorithm are verified through a numerical case.

      • KCI등재

        Adaptive Tracking Control of Nonholonomic Mobile Manipulators Using Recurrent Neural Networks

        Guo Yi,Jianxu Mao,Yaonan Wang,Siyu Guo,Zhiqiang Miao 제어·로봇·시스템학회 2018 International Journal of Control, Automation, and Vol.16 No.3

        The trajectory tracking problem is considered for a class of nonholonomic mobile manipulators in the presence of uncertainties and disturbances. First, under the assumption that the kinematic subsystem of mobile manipulator is capable of being transformed into the chained form and the dynamic subsystem of mobile manipulator is exactly known without considering external disturbances, a model-based controller is designed at the torque level using backstepping design technology. However, the model-based control may be inapplicable for practical applications, as the uncertainties and disturbances do exist in the dynamics of mobile manipulators inevitably. Thus, a Recurrent Neural Network (RNN) based control system is developed without requiring explicit knowledge of the system dynamics. The control system comprises a RNN identifier and a compensation controller, in which the RNN is utilized to identify the unknown dynamics on-line, and the compensation controller is presented to compensate the approximation error and external disturbances. The online adaptive laws of the control system are derived in the Lyapunov sense so that the stability of the system can be guaranteed. Finally, simulation results for a wheeled mobile manipulator are provided to show the good tracking performance and robustness of the proposed control method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼