RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Chitosan-Polyacrylic Acid Hybrid Nanoparticles as Novel Tissue Adhesive: Synthesis and Characterization

        Javad Saberi,Mojtaba Ansari,Bahman Ebrahimi Hoseinzadeh,Soheila Salahshour Kordestani,Seyed Morteza Naghib 한국섬유공학회 2018 Fibers and polymers Vol.19 No.12

        Chitosan (Cs)-poly acrylic acid (PAA) complex nanoparticles well dispersed and stable in aqueous solution was prepared by free radical polymerization of acrylic acid monomers (AA) in the presence of chitosan (Cs). Different concentrations of Cs and AA was cross-linked to form scalable hybrid nanoparticles (HNP). The physicochemical characterization of nanopolymers was investigated using FTIR, dynamic light scattering (DLS) and scanning electron microscopy (SEM). Infrared spectroscopy and electronic microscopy analysis results showed the preparation of Cs-PAA hybrid nanoparticles due to the formation of polyelectrolyte complexes and their spherical shape, respectively. The average particle size obtained under 180 nm for all samples obtained by using DLS analysis. A dhesion strength for the samples with a ratio of Cs/AA 1: 1 and 0.2: 1 was 50 to 120 kPa and 120 to 230 kPa , respectively. Cytotoxicity assay (MTT) showed that cell activity for concentrations X/5 and X/10 was over 7 5 %, demonstrating the sample extracts have suitable cytocompatibility. In addition, hemolytic assay of the samples represents below 0.5 % (according to the standard) in damage extend to red blood cells. Furthermore, prepared tissue adhesive based on Cs-PAA hybrid NPs in terms of adhesion strength was competitive with commercial samples as well as satisfactory results in terms of biocompatibility and blood compatibility were achieved in comparison with commercial available adhesives based on cyanoacrylate.

      • Gene Expression Biodosimetry: Quantitative Assessment of Radiation Dose with Total Body Exposure of Rats

        Saberi, Alihossein,Khodamoradi, Ehsan,Birgani, Mohammad Javad Tahmasebi,Makvandi, Manoochehr Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.18

        Background: Accurate dose assessment and correct identification of irradiated from non-irradiated people are goals of biological dosimetry in radiation accidents. Objectives: Changes in the FDXR and the RAD51 gene expression (GE) levels were here analyzed in response to total body exposure (TBE) to a 6 MV x-ray beam in rats. We determined the accuracy for absolute quantification of GE to predict the dose at 24 hours. Materials and Methods: For this in vivo experimental study, using simple randomized sampling, peripheral blood samples were collected from a total of 20 Wistar rats at 24 hours following exposure of total body to 6 MV X-ray beam energy with doses (0.2, 0.5, 2 and 4 Gy) for TBE in Linac Varian 2100C/D (Varian, USA) in Golestan Hospital, in Ahvaz, Iran. Also, 9 rats was irradiated with a 6MV X-ray beam at doses of 1, 2, 3 Gy in 6MV energy as a validation group. A sham group was also included. After RNA extraction and DNA synthesis, GE changes were measured by the QRT-PCR technique and an absolute quantification strategy by taqman methodology in peripheral blood from rats. ROC analysis was used to distinguish irradiated from non-irradiated samples (qualitative dose assessment) at a dose of 2 Gy. Results: The best fits for mean of responses were polynomial equations with a R2 of 0.98 and 0.90 (for FDXR and RAD51 dose response curves, respectively). Dose response of the FDXR gene produced a better mean dose estimation of irradiated "validation" samples compared to the RAD51 gene at doses of 1, 2 and 3 Gy. FDXR gene expression separated the irradiated rats from controls with a sensitivity, specificity and accuracy of 87.5%, 83.5% and 81.3%, respectively, 24 hours after dose of 2 Gy. These values were significantly (p<0.05) higher than the 75%, 75% and 75%, respectively, obtained using gene expression of RAD51 analysis at a dose of 2 Gy. Conclusions: Collectively, these data suggest that absolute quantification by gel purified quantitative RT-PCR can be used to measure the mRNA copies for GE biodosimetry studies at comparable accuracy to similar methods. In the case of TBE with 6MV energy, FDXR gene expression analysis is more precise than that with RAD51 for quantitative and qualitative dose assessment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼