RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        The Alkali Metal Interactions with MgO Nanotubes

        Beheshtian, Javad,Peyghan, Ali Ahmadi,Bagheri, Zargham,Kamfiroozi, M. Korean Chemical Society 2012 Bulletin of the Korean Chemical Society Vol.33 No.6

        Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of -0.25 to -0.74 eV. HOMO-LUMO gap ($E_g$) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of $E_g$ decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased.

      • KCI등재

        The Alkali Metal Interactions with MgO Nanotubes

        Javad Beheshtian,Ali Ahmadi Peyghan,Zargham Bagheri,M. Kamfiroozi 대한화학회 2012 Bulletin of the Korean Chemical Society Vol.33 No.6

        Adsorption of alkali metals (Li, Na, and K) on the surface of magnesium oxide nanotubes (MgONTs) with different diameters was investigated using density functional theory. According to the obtained results, the most stable adsorption site was found to be atop the oxygen atom of the tube surface with adsorption energies in the range of −0.25 to −0.74 eV. HOMO-LUMO gap (Eg) of the tubes dramatically decreases upon the adsorption of the alkali metals, resulting in enhancement of their electrical conductivity enhancement. The order of Eg decrement caused by the metal adsorption is as follows: K > Na > Li. The results suggest that the MgONTs were transformed from semi-insulator to semiconductor upon the alkali metal adsorption. Increasing the tube diameter, the HOMO/LUMO gap of the pristine tube is enhanced and adsorption energies of the alkali metals are decreased.

      • KCI등재

        A DFT Study on Alkali and Alkaline Earth Metal Encapsulated Fullerene-Like BeO Cluster

        Isa Ravaei,Javad Beheshtian 대한화학회 2017 대한화학회지 Vol.61 No.6

        By using Density Functional Theory (DFT), we have performed alkali metal and alkaline earth metal inside fullerene-like BeO cluster (FLBeOC) in terms of energetic, geometric, charge transfer, work function and electronic properties. It has been found that encapsulated processes of the alkali metal are exothermic and thermodynamically more favorable than alkaline earth metal encapsulation, so that interaction energy (Eint) of the alkali metal encapsulation FLBeOC is in the range of -0.02 to -1.15 eV at level of theory. It is found that, the electronic properties of the pristine fullerene-like BeO cluster are much more sensitive to the alkali metal encapsulation in comparison to alkaline earth metal encapsulation. The alkali and alkaline earth metal encapsulated fullerene-like BeO cluster systems exhibit good sensitivity, promising electronic properties which may be useful for a wide variety of next-generation nano-sensor device components. The encapsulation of alkali and alkali earth metal may increase the electron emission current from the FLBeOC surface by reducing of the work function.

      • SCOPUSKCI등재

        A DFT Study on Alkali and Alkaline Earth Metal Encapsulated Fullerene-Like BeO Cluster

        Ravaei, Isa,Beheshtian, Javad Korean Chemical Society 2017 대한화학회지 Vol.61 No.6

        By using Density Functional Theory (DFT), we have performed alkali metal and alkaline earth metal inside fullerene-like BeO cluster (FLBeOC) in terms of energetic, geometric, charge transfer, work function and electronic properties. It has been found that encapsulated processes of the alkali metal are exothermic and thermodynamically more favorable than alkaline earth metal encapsulation, so that interaction energy ($E_{int}$) of the alkali metal encapsulation FLBeOC is in the range of -0.02 to -1.15 eV at level of theory. It is found that, the electronic properties of the pristine fullerene-like BeO cluster are much more sensitive to the alkali metal encapsulation in comparison to alkaline earth metal encapsulation. The alkali and alkaline earth metal encapsulated fullerene-like BeO cluster systems exhibit good sensitivity, promising electronic properties which may be useful for a wide variety of next-generation nano-sensor device components. The encapsulation of alkali and alkali earth metal may increase the electron emission current from the FLBeOC surface by reducing of the work function.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼