RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Research on Line Overload Emergency Control Strategy Based on the Source-Load Synergy Coefficient

        Jing Ma,Wenbo Kang,James S. Thorp 대한전기학회 2018 Journal of Electrical Engineering & Technology Vol.13 No.3

        A line overload emergency control strategy based on the source-load synergy coefficient is proposed in this paper. First, the definition of the source-load synergy coefficient is introduced. When line overload is detected, the source-load branch synergy coefficient and source-load distribution synergy coefficient are calculated according to the real-time operation mode of the system. Second, the generator tripping and load shedding control node set is determined according to the source-load branch synergy coefficient. And then, according to the line overload condition, the control quantity of each control node is determined using the Double Fitness Particle Swarm Optimization (DFPSO), with minimum system economic loss as the objective function. Thus load shedding for the overloaded line could be realized. On this basis, in order to guarantee continuous and reliable power supply, on the condition that no new line overload is caused, some of the untripped generators are selected according to the source-load distribution synergy coefficient to increase power output. Thus power supply could be restored to some of the shedded loads, and the economic loss caused by emergency control could be minimized. Simulation tests on the IEEE 10-machine 39-bus system verify the effectiveness and feasibility of the proposed strategy.

      • SCIESCOPUSKCI등재

        Research on Line Overload Emergency Control Strategy Based on the Source-Load Synergy Coefficient

        Ma, Jing,Kang, Wenbo,Thorp, James S. The Korean Institute of Electrical Engineers 2018 Journal of Electrical Engineering & Technology Vol.13 No.3

        A line overload emergency control strategy based on the source-load synergy coefficient is proposed in this paper. First, the definition of the source-load synergy coefficient is introduced. When line overload is detected, the source-load branch synergy coefficient and source-load distribution synergy coefficient are calculated according to the real-time operation mode of the system. Second, the generator tripping and load shedding control node set is determined according to the source-load branch synergy coefficient. And then, according to the line overload condition, the control quantity of each control node is determined using the Double Fitness Particle Swarm Optimization (DFPSO), with minimum system economic loss as the objective function. Thus load shedding for the overloaded line could be realized. On this basis, in order to guarantee continuous and reliable power supply, on the condition that no new line overload is caused, some of the untripped generators are selected according to the source-load distribution synergy coefficient to increase power output. Thus power supply could be restored to some of the shedded loads, and the economic loss caused by emergency control could be minimized. Simulation tests on the IEEE 10-machine 39-bus system verify the effectiveness and feasibility of the proposed strategy.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼