RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Regulation Mechanism of Long Noncoding RNAs in Colon Cancer Development and Progression

        Jiaming Zhu,Jingjing Liu,Xiaohuan Tang,Xiaofang Qiao,Chao Chen,Yuanda Liu 연세대학교의과대학 2019 Yonsei medical journal Vol.60 No.4

        Colorectal cancer (CRC) is the second most common cause of cancer-related death worldwide, and its high rates of relapse andmetastasis are associated with a poor prognosis. Despite extensive research, the underlying regulatory mechanisms of CRC remainunclear. Long noncoding RNAs (lncRNAs) are a major type of noncoding RNAs that have received increasing attention inthe past few years, and studies have shown that they play a role in many biological processes in CRC. Here, we summarize recentstudies on lncRNAs associated with CRC and the signaling pathways and mechanisms underlying this association. We show thatdysregulated lncRNAs may be new prognostic and diagnostic biomarkers or therapeutic targets for clinical application. This reviewcontributes not only to our understanding of CRC, but also suggests novel signaling pathways associated with lncRNAs thatcan be targeted to block or eradicate CRC.

      • KCI등재

        PREPARATION OF FOLATE-CONJUGATED BOVINE SERUM ALBUMIN NANOPARTICLES ADSORBING EPIRUBICIN HYDROCHLORIDE

        XIUHUA ZHAO,JIAMING TANG,YUANGANG ZU,WEIGUO WANG,NA LI,WENJIA XU 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2013 NANO Vol.8 No.6

        This work investigated the preparation process of folate-conjugated bovine serum albumin nanoparticles (FA–BSANPs) adsorbing epirubicin hydrochloride (EPI) nanoparticles (FA–EPI–BSANPs), a specific-targeting drug delivery system in cancer chemotherapy. The BSANPs were prepared by desolvation as a drug carrier system and conjugated with folate to produce FA–EPI–BSANPs that specifically target tumors by cross-linking. EPI, an anticancer drug, was adsorbed by this drug carrier system. The influences of six experimental parameters, namely, the adsorption time, FA–BSANPs solution-adsorbed EPI concentration, stirring speed, FA–BSANPs solution pH, the ratio of glutaraldehyde and BSA, and mass ratio of FA–BSANPs to EPI, on the drug loading efficiency (DLR) and drug entrapment efficiency (DER) of FA–EPI–BSANPs were investigated via the single factor method. The results indicated that the optimum operation conditions were obtained with 145.4 nm±0.5 nm MPS, 23.41% DLR and 98.93% DER. The N-hydroxysuccinimide-folate content associated with BSANPs was up to 0.9757% (wt). The DLR and DER of EPI increased with increasing adsorption time, FA–BSANPs solution concentration, and pH value, peaking at 1750 rpm with increasing stirring speed, but decreasing thereafter. The FA–EPI–BSANPs obtained were characterized by laser light scattering, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and thermogravimetric analysis. Drug release in vitro was investigated, as well. The characterization results showed that EPI in FA–EPI–BSANPs existed in an amorphous, instead of crystalline state. Most of the EPI was enclosed by FA–BSANPs, and a small amount was adsorbed onto the surface of the FA–BSANPs. The FA–EPI–BSANPs particles are nearly ellipsoidal and significantly affect sustained release. The inhibitory rate of FA–EPI–BSANP was mensurated by MTT method. The inhibitory rate of FA–EPI–BSANPs for SMMC 7721 cell developed with raise of concentration and was higher than other samples. The IC50 values of FA–EPI–BSANPs and EPI were 11.5 μg/mL and 18.8 μg/mL, respectively. The target ability of FA–EPI–BSANP for SMMC 7721 cell was mensurated by fluorescence (FITC) modified albumin techniques. The uptake rate of FA–EPI–BSANPs was higher than samples without folate conjugated, and increased with increased concentration.

      • KCI등재

        A simple method to isolate structurally and chemically intact brain vascular basement membrane for neural regeneration following traumatic brain injury

        Ji Wanqing,Wu Zhiru,Wen Jiaming,Tang Hengxin,Chen Zhuopeng,Xue Bo,Tian Zhenming,Ba Yueyang,Zhang Ning,Wen Xuejun,Hou Bo 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        The brain vascular basement membrane (brain-VBM) is an important component of the brain extracellular matrix, and the three-dimensional structure of the cerebrovascular network nested with many cell-adhesive proteins may provide guidance for brain tissue regeneration. However, the potential of ability of brain-VBM to promote neural tissue regeneration has not been examined due to the technical difficulty of isolating intact brain-VBM.The present study developed a simple, effective method to isolate structurally and compositionally intact brain-VBM. Structural and component properties of the brain-VBM were characterized to confirm the technique. Seed cells were cocultured with brain-VBM in vitro to analyze biocompatibility and neurite extension. An experimental rat model of focal traumatic brain injury (TBI) induced by controlled cortical impact were conducted to further test the tissue regeneration ability of brain-VBM.Brain-VBM isolated using genipin showed significantly improved mechanical properties, was easy to handle, supported high cell viability, exhibited strong cell adhesive properties, and promoted neurite extension and outgrowth. Further testing of the isolated brain-VBM transplanted at lesion sites in an experimental rat model of focal TBI demonstrated considerable promise for reconstructing a complete blood vessel network that filled in the lesion cavity and promoting repopulation of neural progenitor cells and neurons.The technique allows isolation of intact brain-VBM as a 3D microvascular scaffold to support brain tissue regeneration following TBI and shows considerable promise for the production of naturally-derived biomaterials for neural tissue engineering.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼