RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Vulnerability model of an Australian high-set house subjected to cyclonic wind loading

        D.J. Henderson,J. D. Ginger 한국풍공학회 2007 Wind and Structures, An International Journal (WAS Vol.10 No.3

        This paper assesses the damage to high-set rectangular-plan houses with low-pitch gable roofs (built in the 1960 and 70s in the northern parts of Australia) to wind speeds experienced in tropical cyclones. The study estimates the likely failure mode and percentage of failure for a representative proportion of houses with increasing wind speed. Structural reliability concepts are used to determine the levels of damage. The wind load and the component connection strengths are treated as random variables with log-normal distributions. These variables are derived from experiments, structural analysis, damage investigations and experience. This study also incorporates progressive failures and considers the inter-dependency between the structural components in the house, when estimating the types and percentages of the overall failures in the population of these houses. The progressively increasing percentage of houses being subjected to high internal pressures resulting from damage to the envelope is considered. Results from this study also compare favourably with levels of damage and related modes of failure for high-set houses observed in post-cyclone damage surveys.

      • SCIESCOPUS

        Characteristics of wind loads on roof cladding and fixings

        Ginger, J.D. Techno-Press 2001 Wind and Structures, An International Journal (WAS Vol.4 No.1

        Analysis of pressures measured on the roof of the full-scale Texas Tech building and a 1/50 scale model of a typical house showed that the pressure fluctuations on cladding fastener and cladding-truss connection tributary areas have similar characteristics. The probability density functions of pressure fluctuations on these areas are negatively skewed from Gaussian, with pressure peak factors less than -5.5. The fluctuating pressure energy is mostly contained at full-scale frequencies of up to about 0.6 Hz. Pressure coefficients, $C_p$ and local pressure factors, $K_l$ given in the Australian wind load standard AS1170.2 are generally satisfactory, except for some small cladding fastener tributary areas near the edges.

      • KCI등재
      • SCIESCOPUS

        Fluctuating wind loads across gable-end buildings with planar and curved roofs

        Ginger, J.D. Techno-Press 2004 Wind and Structures, An International Journal (WAS Vol.7 No.6

        Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.

      • KCI등재

        Wind loads on solar panels mounted parallel to pitched roofs, and acting on the underlying roof

        C.J. Leitch,J. D. Ginger,J.D. Holmes 한국풍공학회 2016 Wind and Structures, An International Journal (WAS Vol.22 No.3

        This paper describes an investigation of the net wind loads on solar panels and wind loads on the underlying roof surface for panels mounted parallel to pitched roofs of domestic buildings. Typical solar panel array configurations were studied in a wind tunnel and the aerodynamic shape factors on the panels were put in a form appropriate for the Australian/New Zealand Wind Actions Standard AS/NZS 1170.2:2011. The results can also be used to obtain more refined design data on individual panels within an array. They also suggest values for the aerodynamic shape factors on the roof surface under the panels, based on a gust wind speed at roof height, of 0.5 for wind blowing parallel to the ridge, and 0.6 for wind blowing perpendicular to the ridge. The net loads on solar arrays in the middle portion of the roof are larger than those on the same portion of the roof without any solar panels, thus resulting in increased loads on the underlying roof structure.

      • SCIESCOPUS

        Vulnerability model of an Australian high-set house subjected to cyclonic wind loading

        Henderson, D.J.,Ginger, J.D. Techno-Press 2007 Wind and Structures, An International Journal (WAS Vol.10 No.3

        This paper assesses the damage to high-set rectangular-plan houses with low-pitch gable roofs (built in the 1960 and 70s in the northern parts of Australia) to wind speeds experienced in tropical cyclones. The study estimates the likely failure mode and percentage of failure for a representative proportion of houses with increasing wind speed. Structural reliability concepts are used to determine the levels of damage. The wind load and the component connection strengths are treated as random variables with log-normal distributions. These variables are derived from experiments, structural analysis, damage investigations and experience. This study also incorporates progressive failures and considers the inter-dependency between the structural components in the house, when estimating the types and percentages of the overall failures in the population of these houses. The progressively increasing percentage of houses being subjected to high internal pressures resulting from damage to the envelope is considered. Results from this study also compare favourably with levels of damage and related modes of failure for high-set houses observed in post-cyclone damage surveys.

      • SCIESCOPUS

        Wind loads on solar panels mounted parallel to pitched roofs, and acting on the underlying roof

        Leitch, C.J.,Ginger, J.D.,Holmes, J.D. Techno-Press 2016 Wind and Structures, An International Journal (WAS Vol.22 No.3

        This paper describes an investigation of the net wind loads on solar panels and wind loads on the underlying roof surface for panels mounted parallel to pitched roofs of domestic buildings. Typical solar panel array configurations were studied in a wind tunnel and the aerodynamic shape factors on the panels were put in a form appropriate for the Australian/New Zealand Wind Actions Standard AS/NZS 1170.2:2011. The results can also be used to obtain more refined design data on individual panels within an array. They also suggest values for the aerodynamic shape factors on the roof surface under the panels, based on a gust wind speed at roof height, of ${\pm}0.5$ for wind blowing parallel to the ridge, and ${\pm}0.6$ for wind blowing perpendicular to the ridge. The net loads on solar arrays in the middle portion of the roof are larger than those on the same portion of the roof without any solar panels, thus resulting in increased loads on the underlying roof structure.

      • KCI등재

        Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

        David J. Henderson,John D. Ginger,Murray J. Morrison,Gregory A. Kopp 한국풍공학회 2009 Wind and Structures, An International Journal (WAS Vol.12 No.4

        Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the ‘Low-High-Low’ (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and fullscale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a “design” cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the “design” cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The “design” cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour “design” cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

      • SCIESCOPUS

        Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

        Henderson, David J.,Ginger, John D.,Morrison, Murray J.,Kopp, Gregory A. Techno-Press 2009 Wind and Structures, An International Journal (WAS Vol.12 No.4

        Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

      • SCIESCOPUS

        Vulnerability of roofing components to wind loads

        Jayasinghe, N.C.,Ginger, J.D. Techno-Press 2011 Wind and Structures, An International Journal (WAS Vol.14 No.4

        The vulnerability of roofing components of contemporary houses built in cyclonic regions of Australia is assessed for increasing wind speeds. The wind loads and the component strengths are treated as random variables with their probability distributions derived from available data, testing, structural analysis and experience. Design details including types of structural components of houses are obtained from surveying houses and analyzing engineering drawings. Wind load statistics on different areas of the roof are obtained by wind tunnel model studies and compared with Australian/New Zealand Standard, AS/NZS 1170.2. Reliability methods are used for calculating the vulnerability of roofing components independently over the roof. Cladding and batten fixings near the windward gable edge are found to experience larger negative pressures than prescribed in AS/NZS 1170.2, and are most vulnerable to failure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼