RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Toward Clinical Cancer Imaging Using Terahertz Spectroscopy

        Hwayeong Cheon,Hee-Jin Yang,Joo-Hiuk Son IEEE 2017 IEEE journal on selected topics in quantum electro Vol.23 No.4

        <P>Cancer imaging using terahertz (THz) electromagnetic waves has the potential to overcome the drawbacks of existing cancer imaging techniques because of the unique properties of THz radiation. It is nonionizing, highly sensitive to water molecules, and suitable for the observation of many biomolecular characteristics based on low-energy vibrational modes. Consequently, it is advantageous to use THz cancer imaging for detection, especially of superficial carcinomas in soft tissues. However, there are three primary challenges facing this type of cancer imaging that must be addressed before it can be applied medically: the limited penetration depth in hydrated tissues, the difficulty of obtaining molecular resonance fingerprints of cancers, and the low image contrast between tissues. These challenges can be overcome by applying several state-of-the-art techniques; the penetration depth has been enhanced sufficiently to observe cancer lesions deep inside tissues by using freezing and penetration-enhancing agents: the biochemical modification of DNA can be utilized to track the resonance fingerprints of carcinogenesis at the genomic DNA level; and nanoparticles can increase the THz imaging contrast if they are employed similarly to how they are used inmagnetic resonance imaging. These solutions are important to enable THz cancer imaging to be performed in clinical settings.</P>

      • KCI등재

        Numerical Model for Cerebrovascular Hemodynamics with Indocyanine Green Fluorescence Videoangiography

        Hwayeong Cheon,Young Je Son,Sung Bae Park,Pyoung-Seop Shim,Joo-Hiuk Son,Hee-Jin Yang 대한신경외과학회 2023 Journal of Korean neurosurgical society Vol.66 No.4

        Objective : The use of indocyanine green videoangiography (ICG-VA) to assess blood flow in the brain during cerebrovascular surgery has been increasing. Clinical studies on ICG-VA have predominantly focused on qualitative analysis. However, quantitative analysis numerical modelling for time profiling enables a more accurate evaluation of blood flow kinetics. In this study, we established a multiple exponential modified Gaussian (multi-EMG) model for quantitative ICG-VA to understand accurately the status of cerebral hemodynamics. Methods : We obtained clinical data of cerebral blood flow acquired the quantitative analysis ICG-VA during cerebrovascular surgery. Varied asymmetric peak functions were compared to find the most matching function form with clinical data by using a nonlinear regression algorithm. To verify the result of the nonlinear regression, the mode function was applied to various types of data. Results : The proposed multi-EMG model is well fitted to the clinical data. Because the primary parameters—growth and decay rates, and peak center and heights—of the model are characteristics of model function, they provide accurate reference values for assessing cerebral hemodynamics in various conditions. In addition, the primary parameters can be estimated on the curves with partially missed data. The accuracy of the model estimation was verified by a repeated curve fitting method using manipulation of missing data. Conclusion : The multi-EMG model can possibly serve as a universal model for cerebral hemodynamics in a comparison with other asymmetric peak functions. According to the results, the model can be helpful for clinical research assessment of cerebrovascular hemodynamics in a clinical setting.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼