RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

        Huai-bing Xu,Jin-ping Ou,Chun-wei Zhang,Hui Li,Ping Tan,Fu-lin Zhou 국제구조공학회 2014 Smart Structures and Systems, An International Jou Vol.13 No.2

        In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass river (AMD) systems has been installed on the top of the main structure. The structural principal directions n which the bending modes of the structure are uncoupled are proposed and verified based on the rthogonal projection approach. For the vibration control design in the principal X direction, the simplified odel of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear otors are adopted. The dynamical models of the AMD subsystems are determined according to the pen-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

      • SCIESCOPUS

        Active mass driver control system for suppressing wind-induced vibration of the Canton Tower

        Xu, Huai-Bing,Zhang, Chun-Wei,Li, Hui,Tan, Ping,Ou, Jin-Ping,Zhou, Fu-Lin Techno-Press 2014 Smart Structures and Systems, An International Jou Vol.13 No.2

        In order to suppress the wind-induced vibrations of the Canton Tower, a pair of active mass driver (AMD) systems has been installed on the top of the main structure. The structural principal directions in which the bending modes of the structure are uncoupled are proposed and verified based on the orthogonal projection approach. For the vibration control design in the principal X direction, the simplified model of the structure is developed based on the finite element model and modified according to the field measurements under wind excitations. The AMD system driven by permanent magnet synchronous linear motors are adopted. The dynamical models of the AMD subsystems are determined according to the open-loop test results by using nonlinear least square fitting method. The continuous variable gain feedback (VGF) control strategy is adopted to make the AMD system adaptive to the variation in the intensity of wind excitations. Finally, the field tests of free vibration control are carried out. The field test results of AMD control show that the damping ratio of the first vibration mode increases up to 11 times of the original value without control.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼