RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The impact of oxygen supply flow rates on the distribution of aerosols between the patient and the surgeon during lung intubation

        Lin Tee,Zargar Omid Ali,Hu Ming-Hsuan,Wang Chung-Chun,Hu Shih-Cheng,Leggett Graham 대한설비공학회 2022 International Journal of Air-Conditioning and Refr Vol.30 No.1

        The outbreak of COVID-19 has caused a worldwide pandemic. The widespread infection of the medical staff has caused great attention from all quarters of society. There is a particular concern when considering intubation treatment in the emergency operating room, where a significant amount of virus droplets are typically spread within the room, exposing the medical staff to a high risk of infection. Hence, there is currently a pressing need to develop an effective protection mechanism for the medical staff to prevent them from being infected during routine work. In order to understand the spread of droplets and aerosols when different oxygen supply devices are used for intubation therapy, this study uses particle image velocimetry (PIV) technology to analyze the airflow distribution between the medical staff and the patient. In the experiment, a simple version of the respirator was established to reproduce the breathing of human lungs. This model used oil to create smoke as a tracer aerosol, then a high-sensitivity camera was used to record the scattering light from this smoke (which is irradiated by the green laser sheet). Ultimately, after applying post-processing techniques, the airflow distribution is analyzed. PAO aerosol is the primary aerosol source in this experiment, and it is used to quantify the patient’s breathing; the concentration of PAO aerosol was measured at three different points: head, trunk, and feet. In addition, flow field visualization can effectively present the flow field distribution of the entire operating room; also, the results can be mutually verified with the PAO concentration measurement results. Aerosol concentrations were measured for six different oxygen supply devices with various tidal volumes of the artificial respirator, and the results were ranked from high to low concentrations for different oxygen supply devices and their operational oxygen supply flowrates: HFNC (70 l/min) > CPAP (40 l/min) > HFNC (30 l/min) > nasal cannula (15 l/min) > NRM (15 l/min) > VAPOX (28 l/min).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼