RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Master-followed Multiple Robots Cooperation SLAM Adapted to Search and Rescue Environment

        Hongling Wang,Chengjin Zhang,Yong Song,Bao Pang 제어·로봇·시스템학회 2018 International Journal of Control, Automation, and Vol.16 No.6

        The master-followed multiple robots interactive cooperation simultaneous localization and mapping (SLAM) schemes were designed in this paper, which adapts to search and rescue (SAR) cluttered environments. In our multi-robots SLAM, the proposed algorithm estimates each of multiple robots’ current local sub-map, in this occasion, a particle represents each of moving multi-robots, and simultaneously, also represents the pose of a motion robot. The trajectory of the robot’s movement generated a local sub-map; the sub-maps can be looked on as the particles. Each robot efficiently forms a local sub-map; the global map integrates over these local sub-maps; identifying SAR objects of interest, in which, each of multi-robots acts as local-level features collector. Once the object of interest (OOI) is detected, the location in the global map could be determined by the SLAM. The designed multi-robot SLAM architecture consists of PC remote control center, a master robot, and multi-followed robots. Through mobileRobot platform, the master robot controls multi-robots team, the multiple robots exchange information with each other, and then performs SLAM tasks; the PC remote control center can monitor multi-robot SLAM process and provide directly control for multi-robots, which guarantee robots conducting safety in harsh SAR environments. This SLAM method has significantly improved the objects identification, area coverage rate and loop-closure, and the corresponding simulations and experiments validate the significant effects.

      • KCI등재

        Hydrogenation of methyl methacrylate under mild conditions using biosynthesis Ru catalyst

        Hongling Zhou,Yangqiang Huang,Youwei Cheng,Lijun Wang,Xi Li 한국공업화학회 2017 Journal of Industrial and Engineering Chemistry Vol.47 No.-

        Hydrogenation of methyl methacrylate (MMA) was investigated over Ru-based catalyst supported onactive carbons (AC), which was prepared by bio-reduction method, using C. Platycladi (CP) leaf extract asreductant. By varying reaction temperature, hydrogen pressure and reaction time, hydrogenation ofMMA over the biosynthesis Ru-based catalyst was carried out, and resulted the optimum conditions,30 C (room temperature), 2.0 MPa, and 50 min. The as-prepared Ru/AC catalyst showed high catalyticactivity towards the hydrogenation of MMA, affording 100% of MMA conversion even under mildconditions without solvent and methyl isobutyrate was the only product.

      • SCIESCOPUSKCI등재

        The effective mechanism of the polysaccharides from Panax ginseng on chronic fatigue syndrome

        Wang, Jia,Sun, Chengxin,Zheng, Yan,Pan, Hongling,Zhou, Yifa,Fan, Yuying 대한약학회 2014 Archives of Pharmacal Research Vol.37 No.4

        Ginseng acidic polysaccharide WGPA isolated from the root of Panax ginseng C. A. Meyer was fractionated into WGPA-A and WGPA-N by anion-exchange chromatography. The antifatigue activity of ginseng acidic polysaccharide WGPA has been reported in our previous research. This present study was designed to identify its active component and elucidate the mechanism for preventing chronic fatigue syndrome (CFS). WGPA, WGPA-A and WGPA-N were orally administered to mice once daily for 15 days. The effects of these compounds on physiological biomarkers of oxidative stress and on the morphology of the mitochondria in striated skeletal muscle were assessed. The results of forced swimming test-induced indicated that WGPA and WGPA-A could lengthen the swimming time, while WGPA-N could not. In addition, malondialdehyde and lactate dehydrogenase levels in serum were enhanced; while those of superoxide dismutase and glutathione peroxidase were lowered. Interestingly, the structural degeneration of mitochondria were all ameliorated. These findings suggested that WGPA-A is the active component of WGPA, it might have potential therapeutic effects for CFS and the oxidative stress might be involved in the pathogenesis. Our results also provided essential data for a better understanding of the antifatigue effects of P. ginseng extracts.

      • KCI등재

        The effective mechanism of the polysaccharides from Panax ginseng on chronic fatigue syndrome

        Jia Wang,Chengxin Sun,Yan Zheng,Hongling Pan,Yifa Zhou,Yuying Fan 대한약학회 2014 Archives of Pharmacal Research Vol.37 No.4

        Ginseng acidic polysaccharide WGPA isolatedfrom the root of Panax ginseng C. A. Meyer was fractionatedinto WGPA-A and WGPA-N by anion-exchangechromatography. The antifatigue activity of ginseng acidicpolysaccharide WGPA has been reported in our previousresearch. This present study was designed to identify itsactive component and elucidate the mechanism for preventingchronic fatigue syndrome (CFS). WGPA, WGPAAand WGPA-N were orally administered to mice oncedaily for 15 days. The effects of these compounds onphysiological biomarkers of oxidative stress and on themorphology of the mitochondria in striated skeletal musclewere assessed. The results of forced swimming testinducedindicated that WGPA and WGPA-A couldlengthen the swimming time, while WGPA-N could not. Inaddition, malondialdehyde and lactate dehydrogenase levelsin serum were enhanced; while those of superoxidedismutase and glutathione peroxidase were lowered. Interestingly, the structural degeneration of mitochondriawere all ameliorated. These findings suggested thatWGPA-A is the active component of WGPA, it might havepotential therapeutic effects for CFS and the oxidative stress might be involved in the pathogenesis. Our resultsalso provided essential data for a better understanding ofthe antifatigue effects of P. ginseng extracts.

      • KCI등재

        Preparation of ZnO@void@SiO2 Rattle Type Core–Shell Nanoparticles via Layer-by-Layer Method

        Xiaoman Wang,Junda Song,Hongling Chen 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2016 NANO Vol.11 No.9

        In this paper, we prepared the rattle type nanoparticles ZnO@void@SiO2 by two successive coating processes, followed by heat treatment. The carbon layer was formed over ZnO surface with the aid of the hydrothermal treatment of glucose. Then the resulting composite was used to fabricate a silica shell on the surface by sol–gel method. Finally, ZnO particles were released but still trapped inside the silica hollow after calcination, that is, ZnO@void@SiO2. The composites were characterized by scanning and transmission electron microscope, N2 adsorption experiment, X-ray diffraction, Fourier transform infrared spectroscopy and UV-Vis absorption spectra. The rattle type structure was conformed and the sphere-like structure with the average size of 70 nm and hexagonal wurtzite crystal structure were also observed. The measurement results of optical properties showed even though ZnO@C@SiO2 presented no photocatalysis, ZnO@void@SiO2 showed high activity even the ZnO core was encapsulated with the SiO2 hollow.

      • SCIESCOPUSKCI등재

        Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

        Zhang, Yaxin,Wang, Yuguang,Ma, Zengchun,Liang, Qiande,Tang, Xianglin,Tan, Hongling,Xiao, Chengrong,Gao, Yue The Korean Society of Applied Pharmacology 2017 Biomolecules & Therapeutics(구 응용약물학회지) Vol.25 No.2

        Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

      • KCI등재

        Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

        ( Yaxin Zhang ),( Yuguang Wang ),( Zengchun Ma ),( Qiande Liang ),( Xianglin Tang ),( Hongling Tan ),( Chengrong Xiao ),( Yue Gao ) 한국응용약물학회 2017 Biomolecules & Therapeutics(구 응용약물학회지) Vol.25 No.2

        Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations (- μM) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

      • Research on Preparation Methods of Ultrafine Softwood Powder

        Changsheng Fan,Dongxia Yang,Hongling Wang,Yan Sun,Hua lou,Hongru Yang 보안공학연구지원센터 2016 International Journal of u- and e- Service, Scienc Vol.9 No.4

        Pine wood sawdust is used as raw materials for experimental processing into ultrafine wood powder. Sizes of ultrafine wood powder particles serve as a standard for measuring ultrafine processing. The core part of the experimental processing equipment is the millstone which can exert great shear force and grinding force on strong fiber materials so as to ensure the successful preparation of ultrafine particles. The “equilibrium orbit” model is used to simulate processed superfine particles in calculating separation performance. Moreover, the CFD is chosen for simulating separation performance of wood powder particles with different sizes in the two-phase flow field, so as to ensure the successful separation and grading of wood powder particles with different sizes in the practical processing. Research is made on physical properties of collected wood powder as samples with different sizes and influence on composite material properties when ultrafine wood powder is taken as padding. Research on ultrafine wood powder provides meaningful experimental data and theoretical support for the future research on micro-nano fibrils.

      • SCIESCOPUSKCI등재

        Tanshinone IIA Protects Endothelial Cells from H<sub>2</sub>O<sub>2</sub>-Induced Injuries via PXR Activation

        ( Haiyan Zhu ),( Zhiwu Chen ),( Zengchun Ma ),( Hongling Tan ),( Chengrong Xiao ),( Xianglin Tang ),( Boli Zhang ),( Yuguang Wang ),( Yue Gao ) 한국응용약물학회 2017 Biomolecules & Therapeutics(구 응용약물학회지) Vol.25 No.6

        Tanshinone IIA (Tan IIA) is a pharmacologically active substance extracted from the rhizome of Salvia miltiorrhiza Bunge (also known as the Chinese herb Danshen), and is widely used to treat atherosclerosis. The pregnane X receptor (PXR) is a nuclear receptor that is a key regulator of xenobiotic and endobiotic detoxification. Tan IIA is an efficacious PXR agonist that has a potential protective effect on endothelial injuries induced by xenobiotics and endobiotics via PXR activation. Previously numerous studies have demonstrated the possible effects of Tan IIA on human umbilical vein endothelial cells, but the further mechanism for its exerts the protective effect is not well established. To study the protective effects of Tan IIA against hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) in human umbilical vein endothelial cells (HUVECs), we pretreated cells with or without different concentrations of Tan IIA for 24 h, then exposed the cells to 400 μM H<sub>2</sub>O<sub>2</sub> for another 3 h. Therefore, our data strongly suggests that Tan IIA may lead to increased regeneration of glutathione (GSH) from the glutathione disulfide (GSSG) produced during the GSH peroxidase-catalyzed decomposition of H<sub>2</sub>O<sub>2</sub> in HUVECs, and the PXR plays a significant role in this process. Tan IIA may also exert protective effects against H<sub>2</sub>O<sub>2</sub>-induced apoptosis through the mitochondrial apoptosis pathway associated with the participation of PXR. Tan IIA protected HUVECs from inflammatory mediators triggered by H<sub>2</sub>O<sub>2</sub> via PXR activation. In conclusion, Tan IIA protected HUVECs against H<sub>2</sub>O<sub>2</sub>-induced cell injury through PXR-dependent mechanisms.

      • SCIESCOPUSKCI등재

        Tanshinone IIA Protects Endothelial Cells from H<sub>2</sub>O<sub>2</sub>-Induced Injuries via PXR Activation

        Zhu, Haiyan,Chen, Zhiwu,Ma, Zengchun,Tan, Hongling,Xiao, Chengrong,Tang, Xianglin,Zhang, Boli,Wang, Yuguang,Gao, Yue The Korean Society of Applied Pharmacology 2017 Biomolecules & Therapeutics(구 응용약물학회지) Vol.25 No.6

        Tanshinone IIA (Tan IIA) is a pharmacologically active substance extracted from the rhizome of Salvia miltiorrhiza Bunge (also known as the Chinese herb Danshen), and is widely used to treat atherosclerosis. The pregnane X receptor (PXR) is a nuclear receptor that is a key regulator of xenobiotic and endobiotic detoxification. Tan IIA is an efficacious PXR agonist that has a potential protective effect on endothelial injuries induced by xenobiotics and endobiotics via PXR activation. Previously numerous studies have demonstrated the possible effects of Tan IIA on human umbilical vein endothelial cells, but the further mechanism for its exerts the protective effect is not well established. To study the protective effects of Tan IIA against hydrogen peroxide ($H_2O_2$) in human umbilical vein endothelial cells (HUVECs), we pretreated cells with or without different concentrations of Tan IIA for 24 h, then exposed the cells to $400{\mu}M$ $H_2O_2$ for another 3 h. Therefore, our data strongly suggests that Tan IIA may lead to increased regeneration of glutathione (GSH) from the glutathione disulfide (GSSG) produced during the GSH peroxidase-catalyzed decomposition of $H_2O_2$ in HUVECs, and the PXR plays a significant role in this process. Tan IIA may also exert protective effects against $H_2O_2$-induced apoptosis through the mitochondrial apoptosis pathway associated with the participation of PXR. Tan IIA protected HUVECs from inflammatory mediators triggered by $H_2O_2$ via PXR activation. In conclusion, Tan IIA protected HUVECs against $H_2O_2$-induced cell injury through PXR-dependent mechanisms.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼