RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Screening, Gene Cloning, and Characterizations of an Acid-Stable α-Amylase

        Liu, Xinyu,Jia, Wei,An, Yi,Cheng, Kun,Wang, Mingdao,Yang, Sen,Chen, Hongge The Korean Society for Microbiology and Biotechnol 2015 Journal of microbiology and biotechnology Vol.25 No.6

        Based on its α-amylase activity at pH 5.0 and optimal pH of the crude enzyme, a strain (named B-5) with acid α-amylase production was screened. The B-5 strain was identified as Bacillus amyloliquefaciens through morphological, physiological, and biochemical characteristics analysis, as well as 16S rDNA phylogenetic analysis. Its α-amylase gene of GenBank Accession No. GU318401 was cloned and expressed in Escherichia coli. The purified recombinant α-amylase AMY-Ba showed the optimal pH of 5.0, and was stable at a pH range of 4.0-6.0. When hydrolyzing soluble starch, amylose, and amylopectin, AMY-Ba released glucose and maltose as major end products. The α-amylase AMY-Ba in this work was different from the well-investigated J01542-type α-amylase which also came from B. amyloliquefaciens. AMY-Ba exhibited notable adsorption and hydrolysis ability towards various raw starches. Structure analysis of AMY-Ba suggested the presence of a new starch-binding domain at its C-terminal region.

      • KCI등재

        Experimental study of the influence of sodium salts as additive to NOxOUT process

        Zhaoping Zhong,Xiujin Liang,Baosheng Jin,Xiaolin Chen,Weiling Li,Hongge Wei,Houkun Guo 한국화학공학회 2010 Korean Journal of Chemical Engineering Vol.27 No.5

        An experimental study of the SNCR process with urea as reducing agent and sodium salts as additive has been carried out, and detailed analysis of the reaction mechanism has been given here. In the temperature range of 800-975 oC, NO concentration decreases at first and then increases while the concentration of N2O increases at first and then decreases with the increasing of temperature, and the turning point is 900 oC. With increasing of normalized stoichiometric ratio of reduction nitrogen to NOx (NSR), NO removal efficiency increases, while the concentration of N2O also increases, which decreases overall NOx removal efficiency. With sodium salts as additive, the concentration of N2O decreases with increasing of sodium salts addition at all temperatures, while the concentration of NO decreases at first and then increases at low-temperature side of the temperature window and increases at high-temperature side with additional increasing, whose changing extent is smaller than N2O. Since sodium salts as additive can remove N2O effectively and have no large influence on the removal of NO, the effect of sodium salts as additive is the combined effect of the production of active radicals and the removal of HNCO produced by the decomposition of urea through neutralization reactions, which is more important. To achieve the same effect under each condition, the needed addition of NaOH and CH3COONa is less than that of Na2CO3 counting as Na atom. For the decomposition of CH3COONa can produce CH3COO, its addition can promote the reduction of NO more obviously at the lower temperature than Na2CO3 or NaOH. Overall NOx removal efficiency at 900 oC with NSR=1.5 had been improved from about 30% to 70.45% through the addition of sodium salts. Sodium salts as additive caused the flue gas to become alkaline gas, but it was not serious for sodium salts existing as NaNCO.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼