RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Patient sample-oriented analysis of gene expression highlights extracellular signatures in breast cancer progression

        Hong, Yourae,Kim, Nayoung,Li, Chao,Jeong, Euna,Yoon, Sukjoon Elsevier 2017 Biochemical and biophysical research communication Vol. No.

        <P><B>Abstract</B></P> <P>Although a large collection of cancer cell lines are useful surrogates for patient samples, the physiological relevance of observed molecular phenotypes in cell lines remains controversial. Because transcriptome data are a representative set of molecular phenotypes in cancers, we systematically analyzed the discrepancy of global gene expression profiles between patient samples and cell lines in breast cancers. While the majority of genes exhibited general consistency between patient samples and cell lines, the expression of genes in the categories of extracellular matrix, collagen trimers, receptor activity, catalytic activity and transporter activity were significantly up-regulated only in tissue samples. Genes in the extracellular matrix, particularly collagen trimers, showed a wide variation of expression in tissue, but minimal expression and variation in cell lines. Further analysis of tissue samples exclusively revealed that collagen genes exhibited a cancer stage-dependent expressional variation based on their supramolecular structure. Prognostic collagen biomarkers associated with survival rate were also readily predicted from tissue-oriented transcriptome analysis. This study presents the limitations of cell lines and the exclusive features of tissue samples in terms of functional categories of the cancer transcriptome.</P>

      • KCI등재후보

        Somatic Mutaome Profile in Human Cancer Tissues

        Kim, Nayoung,Hong, Yourae,Kwon, Doyoung,Yoon, Sukjoon Korea Genome Organization 2013 Genomics & informatics Vol.11 No.4

        Somatic mutation is a major cause of cancer progression and varied responses of tumors against anticancer agents. Thus, we must obtain and characterize genome-wide mutational profiles in individual cancer subtypes. The Cancer Genome Atlas database includes large amounts of sequencing and omics data generated from diverse human cancer tissues. In the present study, we integrated and analyzed the exome sequencing data from ~3,000 tissue samples and summarized the major mutant genes in each of the diverse cancer subtypes and stages. Mutations were observed in most human genes (~23,000 genes) with low frequency from an analysis of 11 major cancer subtypes. The majority of tissue samples harbored 20-80 different mutant genes, on average. Lung cancer samples showed a greater number of mutations in diverse genes than other cancer subtypes. Only a few genes were mutated with over 5% frequency in tissue samples. Interestingly, mutation frequency was generally similar between non-metastatic and metastastic samples in most cancer subtypes. Among the 12 major mutations, the TP53, USH2A, TTN, and MUC16 genes were found to be frequent in most cancer types, while BRAF, FRG1B, PBRM1, and VHL showed lineage-specific mutation patterns. The present study provides a useful resource to understand the broad spectrum of mutation frequencies in various cancer types.

      • SCISCIESCOPUS

        Alterations in the Transcriptional Programs of Myeloma Cells and the Microenvironment during Extramedullary Progression Affect Proliferation and Immune Evasion

        Ryu, Daeun,Kim, Seok Jin,Hong, Yourae,Jo, Areum,Kim, Nayoung,Kim, Hee-Jin,Lee, Hae-Ock,Kim, Kihyun,Park, Woong-Yang American Association for Cancer Research 2020 Clinical Cancer Research Vol.26 No.4

        <P><B>Purpose:</B></P><P>In multiple myeloma, extramedullary progression is associated with treatment resistance and a high mortality rate. To understand the molecular mechanisms controlling the devastating progression of myeloma, we applied single-cell RNA-sequencing (RNA-seq) to myeloma in the bone marrow and myelomatous pleural effusions or ascites.</P><P><B>Experimental Design:</B></P><P>Bone marrow or extramedullary myeloma samples were collected from 15 patients and subjected to single-cell RNA-seq. The single-cell transcriptome data of malignant plasma cells and the surrounding immune microenvironment were analyzed.</P><P><B>Results:</B></P><P>Comparisons of single-cell transcriptomes revealed the systematic activation of proliferation, antigen presentation, proteasomes, glycolysis, and oxidative phosphorylation pathways in extramedullary myeloma cells. The myeloma cells expressed multiple combinations of growth factors and receptors, suggesting autonomous and pleiotropic growth potential at the single-cell level. Comparisons of the tumor microenvironment revealed the presence of cytotoxic T lymphocytes and natural killer (NK) cells in both the bone marrow and extramedullary ascites, demonstrating a gene-expression phenotype indicative of functional compromise. In parallel, isolated myeloma cells persistently expressed class I MHC molecules and upregulated inhibitory molecules for cytotoxic T and NK cells.</P><P><B>Conclusions:</B></P><P>These data suggest that myeloma cells are equipped with specialized immune evasion mechanisms in cytotoxic microenvironments. Taken together, single-cell transcriptome analysis revealed transcriptional programs associated with aggressive myeloma progression that support autonomous cell proliferation and immune evasion.</P>

      • Loss-of-function screens of druggable targetome against cancer stem–like cells

        Song, Mee,Lee, Hani,Nam, Myung-Hee,Jeong, Euna,Kim, Somin,Hong, Yourae,Kim, Nayoung,Yim, Hwa Young,Yoo, Young-Ji,Kim, Jung Seok,Kim, Jin-Seok,Cho, Yong-Yeon,Mills, Gordon B.,Kim, Woo-Young,Yoon, Sukjo Federation of American Societies for Experimental 2017 The FASEB Journal Vol.31 No.2

        <P>Cancer stem–like cells (CSLCs) contribute to the initiation and recurrence of tumors and to their resistance to conventional therapies. In this study, small interfering RNA (siRNA)-based screening of ∼4800 druggable genes in 3-dimensional CSLC cultures in comparison to 2-dimensional bulk cultures of U87 glioma cells revealed 3 groups of genes essential for the following: survival of the CSLC population only, bulk-cultured population only, or both populations. While diverse biologic processes were associated with siRNAs reducing the bulk-cultured population, CSLC-eliminating siRNAs were enriched in a few functional categories, such as lipid metabolism, protein metabolism, and gene expression. Interestingly, siRNAs that selectively reduced CSLC only were found to target genes for cholesterol and unsaturated fatty acid synthesis. The lipidomic profile of CSLCs revealed increased levels of monounsaturated lipids. Pharmacologic blockage of these target pathways reduced CSLCs, and this effect was eliminated by addition of downstream metabolite products. The present CSLC-sensitive target categories provide a useful resource that can be exploited for the selective elimination of CSLCs.—Song, M., Lee, H., Nam, M.-H., Jeong, E., Kim, S., Hong, Y., Kim, N., Yim, H. Y., Yoo, Y.-J., Kim, J. S., Kim, J.-S., Cho, Y.-Y., Mills, G. B., Kim, W.-Y., Yoon, S. Loss-of-function screens of druggable targetome against cancer stem–like cells.</P>

      • KCI등재

        Cancer cells undergoing epigenetic transition show short-term resistance and are transformed into cells with medium-term resistance by drug treatment

        POOJAN SHIV,배승현,Jae-Woong Min,이은영,송유라,Kim Hee Yeon,심혜원,Kang Eun-Kyung,김영호,Hae-Ock Lee,Hong Yourae,Woong-Yang Park,장현철,홍경만 생화학분자생물학회 2020 Experimental and molecular medicine Vol.52 No.-

        To elucidate the epigenetic mechanisms of drug resistance, epigenetically reprogrammed H460 cancer cells (R-H460) were established by the transient introduction of reprogramming factors. Then, the R-H460 cells were induced to differentiate by the withdrawal of stem cell media for various durations, which resulted in differentiated R-H460 cells (dR-H460). Notably, dR-H460 cells differentiated for 13 days (13dR-H460 cells) formed a significantly greater number of colonies showing drug resistance to both cisplatin and paclitaxel, whereas the dR-H460 cells differentiated for 40 days (40dR-H460 cells) lost drug resistance; this suggests that 13dR-cancer cells present short-term resistance (less than a month). Similarly, increased drug resistance to both cisplatin and paclitaxel was observed in another R-cancer cell model prepared from N87 cells. The resistant phenotype of the cisplatin-resistant (CR) colonies obtained through cisplatin treatment was maintained for 2–3 months after drug treatment, suggesting that drug treatment transforms cells with short-term resistance into cells with medium-term resistance. In single-cell analyses, heterogeneity was not found to increase in 13dR-H460 cells, suggesting that cancer cells with short-term resistance, rather than heterogeneous cells, may confer epigenetically driven drug resistance in our reprogrammed cancer model. The epigenetically driven short-term and medium-term drug resistance mechanisms could provide new cancer-fighting strategies involving the control of cancer cells during epigenetic transition.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼