RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Development and characterization of polymorphic microsatellite markers in northern fulmar, Fulmarus glacialis (Procellariiformes), and cross‑species amplification in eight other seabirds

        Meg C. Gravley,George K. Sage,Andrew M. Ramey,Scott A. Hatch,Verena A. Gill,Jolene R. Rearick‑Whitney,Aevar Petersen,Sandra L. Talbot 한국유전학회 2019 Genes & Genomics Vol.41 No.9

        Background In the North Pacific, northern fulmar (Fulmarus glacialis) forms extensive colonies in few locales, which may lead to limited gene flow and locale-specific population threats. In the Atlantic, there are thousands of colonies of varying sizes and in Europe the species is considered threatened. Prior screens and classical microsatellite development in fulmar failed to provide a suite of markers adequate for population genetics studies. Objectives The objective of this study was to isolate a suite of polymorphic microsatellite loci with sufficient variability to quantify levels of gene flow, population affinity, and identify familial relationships in fulmar. We also performed a crossspecies screening of these markers in eight other species. Methods We used shotgun sequencing to isolate 26 novel microsatellite markers in fulmar to screen for variability using individuals from two distinct regions: the Pacific (Chagulak Island, Alaska) and the Atlantic (Hafnarey Island, Iceland). Results Polymorphism was present in 24 loci in Chagulak and 23 in Hafnarey, while one locus failed to amplify in either colony. Polymorphic loci exhibited moderate levels of genetic diversity and this suite of loci uncovered genetic structuring between the regions. Among the other species screened, polymorphism was present in one to seven loci. Conclusion The loci yielded sufficient variability for use in population studies and estimation of familial relationships; as few as five loci provide resolution to determine individual identity. These markers will allow further insight into the global population dynamics and phylogeography of fulmars. We also demonstrated some markers are transferable to other species.

      • KCI등재

        Surgical Management of Shoulder and Knee Instability in Patients with Ehlers-Danlos Syndrome: Joint Hypermobility Syndrome

        Andrew Homere,Ioanna K Bolia,Tristan Juhan,Alexander E Weber,Hatch George F 대한정형외과학회 2020 Clinics in Orthopedic Surgery Vol.12 No.3

        Ehlers-Danlos Syndrome (EDS) is a hereditary disorder of the connective tissue, which has been classified into numerous subtypes over the years. EDS is generally characterized by hyperextensible skin, hypermobile joints, and tissue fragility. According to the 2017 International Classification of EDS, 13 subtypes of EDS have been recognized. The majority of genes involved in EDS are either collagen-encoding genes or genes encoding collagen-modifying enzymes. Orthopedic surgeons most commonly encounter patients with the hypermobile type EDS (hEDS), who present with signs and symptoms of hypermobility and/or instability in one or more joints. Patients with joint hypermobility syndrome (JHS) might also present with similar symptomatology. This article will focus on the surgical management of patients with knee or shoulder abnormalities related to hEDS/JHS.

      • KCI등재

        Acute Compartment Syndrome after Non-Contact Peroneus Longus Muscle Rupture

        Jarrad Merriman,Diego Villacis,Curtis Kephart,Anthony Yi,Russ Romano,George F. Rick Hatch 대한정형외과학회 2015 Clinics in Orthopedic Surgery Vol.7 No.4

        This case demonstrates a rare variation in the pattern of injury and the presentation of acute lateral compartment syndrome of the leg. Although uncommon, lateral compartment syndrome of the leg after an ankle inversion leading to peroneus longus muscle rupture has been previously documented. This case was unusual because there was no overt ankle injury and the patient was able to continue physical activity, in spite of a significant rupture of the peroneus longus muscle that was determined later. This case highlights the necessary vigilance clinicians must maintain when assessing non-contact injuries in patients with possible compartment syndrome.

      • KCI등재

        Glenoid Bone Loss in Shoulder Instability: Superiority of Three-Dimensional Computed Tomography over Two-Dimensional Magnetic Resonance Imaging Using Established Methodology

        Alexander E Weber,Ioanna K Bolia,Andrew Horn,Diego Villacis,Reza Omid,James E Tibone,Eric White,George F Hatch 대한정형외과학회 2021 Clinics in Orthopedic Surgery Vol.13 No.2

        Background: Recent literature suggests that three-dimensional magnetic resonance imaging (3D MRI) can replace 3D computed tomography (3D CT) when evaluating glenoid bone loss in patients with shoulder instability. We aimed to examine if 2D MRI in conjunction with a validated predictive formula for assessment of glenoid height is equivalent to the gold standard 3D CT scans for patients with recurrent glenohumeral instability. Methods: Patients with recurrent shoulder instability and available imaging were retrospectively reviewed. Glenoid height on 3D CT and 2D MRI was measured by two blinded raters. Difference and equivalence testing were performed using a paired t -test and two one-sided tests, respectively. The interclass correlation coefficient (ICC) was used to test for interrater reliability, and percent agreement between the measurements of one reviewer was used to assess intrarater reliability. Results: Using an equivalence margin of 1 mm, 3D CT and 2D MRI were found to be different (p = 0.123). The mean glenoid height was significantly different when measured on 2D MRI (39.09 ± 2.93 mm) compared to 3D CT (38.71 ± 2.89 mm) (p = 0.032). The mean glenoid width was significantly different between 3D CT (30.13 ± 2.43 mm) and 2D MRI (27.45 ± 1.72 mm) (p < 0.001). The 3D CT measurements had better interrater agreement (ICC, 0.91) than 2D MRI measurements (ICC, 0.8). intrarater agreement was also higher on CT. Conclusions: Measurements of glenoid height using 3D CT and 2D MRI with subsequent calculation of the glenoid width using a validated methodology were not equivalent, and 3D CT was superior. Based on the validated methods for the measurement of glenoid bone loss on advanced imaging studies, 3D CT study must be preferred over 2D MRI in order to estimate the amount of glenoid bone loss in candidates for shoulder stabilization surgery and to assist in surgical decision-making.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼