RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Thermoelectric Performance of Poly(3-hexylthiophene) Films Doped by Iodine Vapor with Promising High Seebeck Coefficient

        Hongfei Zhu,Congcong Liu,Haijun Song,Jingkun Xu,Fangfang Kong,Jianmin Wang 대한금속·재료학회 2014 ELECTRONIC MATERIALS LETTERS Vol.10 No.2

        Poly(3-hexylthiophene) (P3HT) films doped with iodine vapor have been prepared by casting a P3HT solution on glass substrates and their thermoelectric (TE) performances has been investigated. The maximum Seebeck coefficient and electrical conductivity of iodine-doped P3HT films were 386 μV·K−1 (at room temperature) and 4.7 × 10−1 S·cm−1, which is about five orders of magnitude higher than that of pristine P3HT films. The power factor of these iodine-doped P3HT films was estimated to be 7.0 μW·m−1·K−2 at room temperature, which is a relative high value for organic TE materials. The UV-vis spectra of iodine-doped P3HT films showed a slight red shift of the iodine-doped P3HT compared to those of pristine P3HT films. Atomic force microscopy images indicated the conformational changes in P3HT chains after treatment with iodine vapor. During this treatment, the P3HT chains self-organized into a more ordered structure, this organization improved the charge carrier transport capability and the TE performance of P3HT the films.

      • A Method for The Evaluating Performance of High Power Electromagnetic Transmitter

        Xiguo Ren,Yiming Zhang,Haijun Tao,Xuezheng Zhu 보안공학연구지원센터 2016 International Journal of u- and e- Service, Scienc Vol.9 No.9

        In recent years, the Earth's resources have the obvious contradiction between supply and demand. Electromagnetic has become the most effective means for prospecting geological structure. In the electromagnetic method, the transmission frequency has a significant impact on the reception and subsequent analysis. Therefore, the distribution and stability of the actual transmission frequency is an extremely important factor in judging for the transmitter. This paper presents an assessment method of the transmitting the performance parameters for the high-power electromagnetic transmitter. This method can intuitively observe the actual transmission frequency by the position machine when the transmitter is working. And the frequency distribution and stability could be got by Matlab. After a large number of comparative field trials, this method is verified which could quickly and efficiently get the frequency distribution and stability of the actual transmitting. This method could provide a basis for future inversion calculation and have a guiding role for the transmitter optimization.

      • KCI등재

        Highly Efficient and Recyclable g-C3N4/CuO Hybrid Nanocomposite Towards Enhanced Visible-Light Photocatalytic Performance

        Shiquan Hong,Yong Yu,Zhijie Yi,Haijun Zhu,Wencheng Wu,Peiyan Ma 성균관대학교(자연과학캠퍼스) 성균나노과학기술원 2016 NANO Vol.11 No.11

        A highly efficient visible-light-driven g-C3N4/CuO hybrid nanocomposite catalyst with different molar contents of CuO are successfully fabricated via a simple liquid phase synthesis process and applied to the degradation of Rhodamine B (RhB) solution. The results reveal that monodisperse CuO nanoparticles with a size of less than 10 nm are uniformly distributed on the surface of gC3N4 nanosheets. Compared with the pure g-C3N4 and CuO, the as-prepared nanocomposite displays significantly enhanced photocatalytic performance under visible-light irradiation. Attractively, the photocatalytic activities of the nanocomposite catalysts can be tuned by adjusting the molar ratio of g-C3N4 and CuO. When the molar ratio reaches 2:1, the nanocomposite exhibits the highest photocatalytic activity, which can decompose RhB completely in 5 min. The improved performance could be ascribed to the formation of heterostructure between g-C3N4 and CuO as well as the decreased particle size of CuO, the presence of H2O2, large surfaceexposure area and the suitable band position of g-C3N4/CuO nanocomposite. Interestingly, the nanocomposite shows excellent stability and recyclable property toward the photodegradation of RhB. Finally, a possible photocatalytic mechanism is proposed.

      • Cathode interfacial layer-free all small-molecule solar cells with efficiency over 12%

        Wu, Hao,Yue, Qihui,Zhou, Zichun,Chen, Shanshan,Zhang, Dongyang,Xu, Shengjie,Zhou, Huiqiong,Yang, Changduk,Fan, Haijun,Zhu, Xiaozhang The Royal Society of Chemistry 2019 Journal of materials chemistry. A, Materials for e Vol.7 No.26

        <P>While nonfullerene small-molecule solar cells (NF-SMSCs) have relatively inferior performance compared with nonfullerene polymer solar cells, their performance is improving. In this work, a weak crystalline molecular donor BSFTR, was designed and synthesized to achieve efficient NF-SMSCs. By blending with a strong crystalline acceptor NBDTP-Fout, BSFTR achieves a well-intermixed blending morphology, which favors the formation of efficient charge percolation pathways with suppressed recombination. The BSFTR:NBDTP-Fout device obtains a power-conversion efficiency (PCE) of approximately 11.97% by achieving an efficient cathode interfacial layer (CIL)-free device that delivers an even higher PCE of 12.3%, which ranks among the top values for the reported NF-SMSCs. This work provides a simple solution for achieving high-performance NF-SMSCs by identifying the key factors for designing efficient, cost-saving, mass production-favorable CIL-free organic photovoltaic devices.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼