RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

        Gustan PARI,Lisna EFIYANTI,Saptadi DARMAWAN,Nur Adi SAPUTRA,Djeni HENDRA,Joseph ADAM,Alfred INKRIWANG,Rachman EFFENDI 한국목재공학회 2023 목재공학 Vol.51 No.3

        The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%–30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%–2.62%; ash of 11.61%–13.98%; volatile matter of 27.15%– 51.74%; and fixed carbon content of 40.24%–59.46%. The compressive strength of the briquettes is 186–540 kg/cm2. Their calorific value is 5,338–6,120 kcal/kg, combusting at a high speed of 0.15–0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

      • KCI등재

        Furfurylation Effects on Discoloration and Physical-Mechanical Properties of Wood from Tropical Plantation Forests

        ( Yusuf Sudo Hadi ),( Elis Nina Herliyana ),( Gustan Pari ),( Rohmah Pari ),( Imam Busyra Abdillah ) 한국목재공학회 2022 목재공학 Vol.50 No.1

        Wood from tropical plantation forests has lower physical and mechanical properties than mature wood. Furfuryl alcohol (FA) impregnation into the wood could help to enhance hydrophobic properties, dimensional stability, and structural strength. Furfurylation was applied to specimens of the following four fast-growing tropical wood species: jabon (Anthocephalus cadamba), sengon (Falcataria moluccana), mangium (Acacia mangium), and pine (Pinus merkusii). The discoloration and physical and mechanical properties were subsequently measured, and the results showed that furfurylated wood had a darker color and better physical and mechanical properties than untreated wood. Specifically, the furfurylated wood had higher density, modulus of elasticity, and hardness and lower moisture content, water absorption, swelling, and shrinkage. The furfurylation significantly enhanced physical and mechanical properties.

      • KCI등재

        Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets

        Nyoman J Wistara,Moh Arif Rohmatullah,Fauzi Febrianto,Gustan Pari,Seung-hwan Lee,Nam-hun Kim 한국목재공학회 2017 목재공학 Vol.45 No.6

        Oil palm trunk (OPT) is a potential source of biomass for the production of biopellet. In the present research, biopellet were prepared from the meristem part of 25 years old OPT with various percentages of its bark (0, 10, and 30%). The highest biopellet durability was found for biopellet produced at 130℃ of pelletizing temper-ature with 30% bark content. Scanning electron microscopy (SEM) of biopellet showed the weak of particle bonding due to the low pelletizing pressure. The moisture content, unit density, ash content, and caloric value of OPT-based pellets were 3.55-5.35%, 525.56-855.23 kg/m<sup>3</sup>, 2.76-3.44%, and 17.89-19.14 MJ/kg, respectively. The combustion profiles obtained by thermogravimetric analysis (TGA) seemed to be unaffected by the bark content on. Differential thermal analysis of TGA curve indicated different pyrolysis characteristic of hemi-cellulose, cellulose, and lignin.

      • KCI등재

        Color Change and Resistance to Subterranean Termite Attack of Mangium (Acacia mangium) and Sengon (Falcataria moluccana) Smoked Wood

        ( Yusuf Sudo Hadi ),( Muh Yusram Massijaya ),( Imam Busyra Abdillah ),( Gustan Pari ),( Wa Ode Muliastuty Arsyad ) 한국목재공학회 2020 목재공학 Vol.48 No.1

        Indonesian log production is dominated by young trees harvested from plantation forests. The timber contains of sapwood and juvenile wood, which are not resistant to termite attack. Smoking treatment can enhance wood resistance to termite attack, but it also changes the color. Specimens of mangium (Acacia mangium) and sengon (Falcataria moluccana) wood were exposed for 1, 2, and 3 weeks to smoke produced from the pyrolysis of salam (Syzygium polyanthum) wood. The color change of the wood was measured using the CIELab method. In addition, wood specimens were exposed to subterranean termites (Coptotermes curvignathus Holmgren) under laboratory conditions. Untreated and imidacloprid-preserved wood samples were also prepared for comparison purposes. The results showed that the color of smoked wood differed from that of untreated wood, and the color change for sengon was greater than for mangium. In addition, the 1-week smoking period changed the wood color less than the 2- and 3-week periods, which did not differ. Imidacloprid-preserved wood had distinctive color changes compared to untreated wood. Untreated mangium wood had moderate resistance to subterranean termite attack (resistance class III), while sengon had very poor resistance (resistance class V). Salam wood smoke enhanced wood resistance to termite attack, and smoke treatment of 1 week for mangium and 2 weeks for sengon resulted in the wood becoming very resistant (resistance class I). Both types of smoked wood were more resistant to subterranean termite attack than imidacloprid-preserved wood (average class II resistance).

      • KCI등재

        Characteristics of Bio Pellets from Spent Coffee Grounds and Pinewood Charcoal Based on Composition and Grinding Method

        Nopia CAHYANI,Andi Detti Yunianti,Suhasman,Kidung Tirtayasa Putra PANGESTU,Gustan PARI 한국목재공학회 2023 목재공학 Vol.51 No.1

        One type of biomass that has promising potential for bio pellet production is spent coffee grounds (SCGs). However, previous studies have shown that SCGs in bio pellets cause a lot of smoke. Therefore, they need to be mixed with a material that has a higher calorific value to produce better quality pellets. One material that can be used is pine wood because it has a natural resin content that can increase the calorific value. The aim of this study was to examine the quality of bio pellets produced with SCGs and pine wood charcoal at different particle sizes. The charcoal was ground using either a hammer mill (HM) or a ball mill (BM). Pine wood charcoal was mixed with SCGs at ratios of SCGs to pine wood charcoal of 4:6 and 6:4 by weight, respectively, and the adhesive used a tapioca with a composition ratio 5% of the raw material. The bio pellets were produced using a manual pellet press. The quality of the bio pellets was assessed based on Indonesian National Standard (SNI) 8021-2014, and the physical observations include flame length, burning rate, and compressive strength. The average water content, ash content, and calorific value of the bio pellets were in accordance with SNI 8021-2014, but the density and ash content values were below the standard values. The BM variation of bio pellets had a higher compressive strength than the HM variation, and the 4:6 BM variation had the longest burning time compared with 4:6 HM.

      • KCI등재

        Resistance of Polystyrene-Impregnated Glued Laminated Lumbers after Exposure to Subterranean Termites in a Field

        Dede Hermawan,Mahdi MUBAROK,Imam Busyra ABDILLAH,Yusuf Sudo HADI,Cossey YOSI,Aujchariya CHOTIKHUN,Rohmah PARI,Gustan PARI 한국목재공학회 2024 목재공학 Vol.52 No.1

        Termites are a serious threat to wood-based products in Indonesia. This study investigated the termite resistant property of glulam made from polystyrene-modified wood. Three tropical fast-growing wood species, namely mangium (Acacia mangium), manii (Maesopsis eminii), and rubberwood (Hevea brasiliensis), were prepared for flat-sawn laminae. After getting air-dried condition, the laminae were impregnated with polystyrene using potassium peroxydisulphate as a catalyst followed by polymerization at 80℃. Polystyrene-impregnated and control glued-laminated lumbers (glulams) were manufactured, and solid wood was provided. Three wood species and three wood products with six replicates were exposed in a field in Bogor, Indonesia, for four months, and before the tests, their density and moisture content were measured. At the end of the field tests, the weight loss and protection levels of each test sample were determined. A completely randomized factorial design was used for data analysis. The weight percentage gains for mangium, manii, and rubberwood were 22.30%, 18.22%, and 10.44%, respectively. The results showed that manii belonged to low-density wood, whereas the other two woods were medium-density wood, and the moisture content was the ambient moisture content, typical of the Bogor area. Regarding weight loss and protection level, mangium was the most durable against subterranean termite attacks, followed by rubberwood and manii. Among the wood products, the polystyrene-impregnated glulam presented the highest durability, followed by the control glulam and solid wood. Therefore, mangium and rubberwood polystyrene-impregnated glulams are recommended for future product development.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼