RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of compound coupling agent treatment on mechanical property and water absorption of hollow glass microspheres/epoxy composite

        Zhaolin Zhu,Yin Liu,Guiyang Xian,Yan Wang,Chongmei Wu,Xiaobo Peng,Jinxiang Wang,Lingbing Kong 한국고분자학회 2023 Macromolecular Research Vol.31 No.8

        Hollow glass microspheres (HGMs), as a reinforcing material to prepare lightweight high-performance composites, have excellent mechanical properties. However, the composites prepared by simply mixing hollow glass microspheres with polymer resin have poor performance. In this study, compound coupling agent-modified HGM/EP composites were prepared by casting process with two silane coupling agents as compound coupling agents. Scanning electron microscopy and infrared (IR) spectroscopy were used to characterize the treated HGM. Meanwhile density, water absorption behavior, and mechanical properties of the modified HGM-filled epoxy composites were examined. It is found that the compound coupling agent could effectively improve the interfacial bonding between HGM and the matrix resin. A new chemical bond was formed between HGM and EP, which was confirmed by IR spectroscopy. Compared with their untreated counterparts, the composites treated with the complex coupling agent exhibited excellent mechanical properties, along with lower density and lower water absorption.

      • KCI등재

        Synthesis and Characterization of Compound Coupling Agent-Modified Hollow Glass Microspheres/Epoxy Composites

        Zhaolin Zhu,Yin Liu,Guiyang Xian,Yan Wang,Chongmei Wu,Xiaobo Peng,Lingbing Kong 한국섬유공학회 2023 Fibers and polymers Vol.24 No.9

        In this study, hollow glass microsphere/epoxy composites modified with compound coupling agent of titanate (CS201) and silane (KH540) were prepared and characterized. The addition of the compound coupling agent improves the interfacial bonding between the microbeads and the resin matrix. Scanning electron microscopy results indicated that the compound coupling agent can effectively reduce the number of voids between the microbeads and the resin. FTIR and XPS spectra showed that new chemical bonds were formed between the hollow glass microspheres and resin, which enhanced the interfacial bonding between them. By testing the water absorption and mechanical properties of the composites, it found that the addition of the hybrid coupling agent can reduce the water absorption to a minimum level of 1.184%. Due to the improvement of interfacial compatibility, mechanical properties of the composites were enhanced, (with tensile strength of 43.03 MPa, bending strength of 44.56 MPa, bending modulus of 1407 MPa and compressive strength of 81.55 MPa). When the content of the coupling agent was 5% and the volume ratio of CS201 to KH540 was 1:1, the synergistic enhancement effect was the most significant.

      • SCIESCOPUSKCI등재

        A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

        Hu, Xuefeng,Zhang, Meng,Li, Yongchao,Li, Linpeng,Wu, Guiyang The Korean Institute of Power Electronics 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.3

        This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

      • KCI등재

        A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

        Xuefeng Hu,Meng Zhang,Yongchao Li,Linpeng Li,Guiyang Wu 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.3

        This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance rDS(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼