RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

        Shen, Hanlin,Luo, Xin,Liang, Guilin,Shen, Anwen The Korean Institute of Power Electronics 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

      • KCI등재

        A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

        Hanlin Shen,Xin Luo,Guilin Liang,Anwen Shen 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

      • KCI등재

        Necessary and Sufficient Condition of Optimal Control for Networked Control Systems with Markovian Packet Dropouts

        Xiao Lu,Yuanyu Cai,Guilin Zhang,Hongxia Wang,Haixia Wang,Xiao Liang 제어·로봇·시스템학회 2023 International Journal of Control, Automation, and Vol.21 No.5

        This paper considers optimal control problem for networked control systems (NCSs) with Markovian packet dropouts. Since previous literatures generally consider the one-way Markovian packet dropouts, i.e., from the sensor to the estimator or from the controller to the actuator. To make a further study of this issue, we aim to give the complete solution to the control problem of the two-way Markovian packet dropouts, i.e., from the sensor to the estimator and from the controller to the actuator. Firstly, by applying the Pontryagin’s maximum principle and mathematical induction method, a solution to the forward and backward stochastic difference equations (FBSDEs) is derived. Secondly, in virtue of the solution to the FBSDEs, we obtain the necessary and sufficient condition for the optimal control problem. Thirdly, the optimal controller is given based on the complete square method. Finally, numerical examples are proposed to illustrate the effectiveness of the theoretical results.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼