RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Rational analysis model and seismic behaviour of tall bridge piers

        Jianzhong Li,Zhongguo Guan,Zhiyao Liang 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.51 No.1

        This study focuses on seismic behaviour of tall piers characterized by high slender ratio. Two analysis models were developed based on elastic-plastic hinged beam element and elastic-plastic fiber beam element, respectively. The effect of the division density of elastic-plastic hinged beam element on seismicdemand was discussed firstly to seek a rational analysis model for tall piers. Then structural seismicbehaviour such as the formation of plastic hinges, the development of plastic zone, and the displacement at the top of the tall piers were investigated through incremental dynamic analysis. It showed that the seismic behaviour of a tall pier was quite different from that of a lower pier due to higher modes contributions. In a tall pier, an additional plastic zone may occur at the middle height of the pier with the increase of seismicexcitation. Moreover, the maximum curvature reaction at the bottom section and maximum lateral displacement at the top turned out to be seriously out of phase for a tall pier due to the higher modes effect, and thus pushover analysis can not appropriately predict the local displacement capacity.

      • SCIESCOPUS

        Rational analysis model and seismic behaviour of tall bridge piers

        Li, Jianzhong,Guan, Zhongguo,Liang, Zhiyao Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.51 No.1

        This study focuses on seismic behaviour of tall piers characterized by high slender ratio. Two analysis models were developed based on elastic-plastic hinged beam element and elastic-plastic fiber beam element, respectively. The effect of the division density of elastic-plastic hinged beam element on seismic demand was discussed firstly to seek a rational analysis model for tall piers. Then structural seismic behaviour such as the formation of plastic hinges, the development of plastic zone, and the displacement at the top of the tall piers were investigated through incremental dynamic analysis. It showed that the seismic behaviour of a tall pier was quite different from that of a lower pier due to higher modes contributions. In a tall pier, an additional plastic zone may occur at the middle height of the pier with the increase of seismic excitation. Moreover, the maximum curvature reaction at the bottom section and maximum lateral displacement at the top turned out to be seriously out of phase for a tall pier due to the higher modes effect, and thus pushover analysis can not appropriately predict the local displacement capacity.

      • KCI등재

        Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management

        Yueyue Guan,Guohua Tang,Lei Li,Jianzhong Shu,Yuhua Zhao,Li Huang,Jun Tang 대한약학회 2024 Archives of Pharmacal Research Vol.47 No.2

        The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general healthas it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gutmicrobiota and the central nervous system, that can infl uence neurodegenerative diseases (NDs). Indeed, imbalances in thegut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbalmedicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptomsand delay the progression of NDs by improving intestinal barrier function, reducing neuroinfl ammation, and modulatingneurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiotain the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeuticstrategies for NDs. In this review, we investigate the potential neuroprotective eff ects of herbal medicine, focusing on itsability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research prioritiesof the integration of herbal medicine and modern medicine. As the global population ages, access to this information isbecoming increasingly important for developing eff ective treatments for these diseases.

      • KCI등재

        Mechanical Stimulation and Diameter of Fiber Scaffolds Affect the Differentiation of Rabbit Annulus Fibrous Stem Cells

        Zhou Pinghui,Wei Bangguo,Guan Jingjing,Chen Yu,Zhu Yansong,Ye Yuchen,Meng Yue,Guan Jianzhong,Mao Yingji 한국조직공학과 재생의학회 2021 조직공학과 재생의학 Vol.18 No.1

        BACKGROUND: Degeneration of the annulus fibrosus (AF), an important structure of the intervertebral disc, is one of the main causes of degenerative disc disease. Fabrication of scaffolds replicating the stratified microstructure of the AF is critical for the successful regeneration of AF. METHODS: In this study, we cultured rabbit AF-derived stem cells (AFSCs) using fabricated electrospun fibrous poly-L-lactic acid scaffolds with different diameters. We applied cyclic tensile strain (CTS) on the scaffolds to regulate the differentiation of AFSCs into specific cell types that resided at the inner, middle, and outer zones of the AF. RESULTS: We found that the morphologies of AFSCs on the smaller-fiber-diameter scaffolds were nearly round, whereas spindle-like cells morphologies were observed on large-diameter scaffolds. CTS enhanced these phenomena and made the cells slender. The expression levels of collagen-I in cells increased as a function of the fiber diameter, whereas collagen-II and aggrecan exhibited opposite trends. Moreover, the application of CTS upregulated the gene expressions of collagen-I, collagen-II, and aggrecan. CONCLUSION: Overlaying the scaffolds with different CTS-stimulated cells could eventually lead to engineered AF tissues with hierarchical structures that approximated the native AF tissue. Thus, the proposed methodologies could be potentially applied for AF regeneration. BACKGROUND: Degeneration of the annulus fibrosus (AF), an important structure of the intervertebral disc, is one of the main causes of degenerative disc disease. Fabrication of scaffolds replicating the stratified microstructure of the AF is critical for the successful regeneration of AF. METHODS: In this study, we cultured rabbit AF-derived stem cells (AFSCs) using fabricated electrospun fibrous poly-L-lactic acid scaffolds with different diameters. We applied cyclic tensile strain (CTS) on the scaffolds to regulate the differentiation of AFSCs into specific cell types that resided at the inner, middle, and outer zones of the AF. RESULTS: We found that the morphologies of AFSCs on the smaller-fiber-diameter scaffolds were nearly round, whereas spindle-like cells morphologies were observed on large-diameter scaffolds. CTS enhanced these phenomena and made the cells slender. The expression levels of collagen-I in cells increased as a function of the fiber diameter, whereas collagen-II and aggrecan exhibited opposite trends. Moreover, the application of CTS upregulated the gene expressions of collagen-I, collagen-II, and aggrecan. CONCLUSION: Overlaying the scaffolds with different CTS-stimulated cells could eventually lead to engineered AF tissues with hierarchical structures that approximated the native AF tissue. Thus, the proposed methodologies could be potentially applied for AF regeneration.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼