RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Functionalization of multi-walled carbon nanotubes (MWCNTs) with nitrogen plasma for photovoltaic device application

        Golap Kalita,Sudip Adhikari,Hare Ram Aryal,Rakesh Afre,Tetsuo Soga,Maheshwar Sharon,Masayoshi Umeno 한국물리학회 2009 Current Applied Physics Vol.9 No.3

        Multi-walled carbon nanotubes (MWCNTs) placed under nitrogen (N2) and argon (Ar) microwave plasma in order to functionalize covalently their side walls with nitrogen containing groups. X-ray photoelectron spectroscopy (XPS) study shows surface modification of the MWCNTs with imine, amine, nitride and amide groups grafted on the side walls. Due to the functional groups, homogenous distribution of MWCNTs in solvent could be obtained. For photovoltaic device fabrication MWCNTs film was casted over n-Si wafer and poly(3-octylthiophene) solution was infiltered. Devices with functionalized MWCNTs show short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) and power conversion efficiency (g) as 1.8 mA/㎠, 0.20 V, 24% and 0.086%, respectively. In the composite film functionalized MWCNTs facilitate photo induced charge separation and efficient holes transportation, suppressing recombination of photo generated charges. Multi-walled carbon nanotubes (MWCNTs) placed under nitrogen (N2) and argon (Ar) microwave plasma in order to functionalize covalently their side walls with nitrogen containing groups. X-ray photoelectron spectroscopy (XPS) study shows surface modification of the MWCNTs with imine, amine, nitride and amide groups grafted on the side walls. Due to the functional groups, homogenous distribution of MWCNTs in solvent could be obtained. For photovoltaic device fabrication MWCNTs film was casted over n-Si wafer and poly(3-octylthiophene) solution was infiltered. Devices with functionalized MWCNTs show short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) and power conversion efficiency (g) as 1.8 mA/㎠, 0.20 V, 24% and 0.086%, respectively. In the composite film functionalized MWCNTs facilitate photo induced charge separation and efficient holes transportation, suppressing recombination of photo generated charges.

      • KCI등재후보

        Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers

        Maheshwar Sharon,Madhuri Sharon,Golap Kalita,Bholanath Mukherjee 한국탄소학회 2011 Carbon Letters Vol.12 No.1

        Synthesis of carbon fibers from cotton fiber by pyrolysis process has been described. Synthesis parameters are optimized using Taguchi optimization technique. Synthesized carbon fibers are used for studying hydrogen adsorption capacity using Seivert's apparatus. Transmission electron microscopy analysis and X-ray diffraction of carbon fiber from cotton suggested it to be very transparent type material possessing graphitic nature. Carbon synthesized from cotton fibers under the conditions predicted by Taguchi optimization methodology (no treatment of cotton fiber prior to pyrolysis, temperature of pyrolysis 800℃, Argon as carrier gas and paralyzing time for 2 h) exhibited 7.32 wt% hydrogen adsorption capacity.

      • SCIESCOPUSKCI등재

        Non-blinking dendritic crystals from C-dot solution

        Ashmi Mewada,Ritesh Vishwakarma,Bhushan Patil,Chinmay Phadke,Golap Kalita,Maheshwar Sharon,Madhuri Sharon 한국탄소학회 2015 Carbon Letters Vol.16 No.3

        Bio-imaging and drug carriers for delivery have created a huge demand for crystals. Crystals are fascinating materials that have been grown for a long time but obtaining biocompatible fluorescent crystals is a challenging task. We report on the growth of fluorescent crystals using a carbon dot (C-dot) solution by a hydrothermal process. The crystallization pattern of these C-dots exhibited a unique dendritic structure having a feather-like morphology. The growth temperature and pressure were maintained at 60°C and 200 mmHg, respectively, for crystal growth. A green fluorescence (under UV light) that was observed in the C-dot solution was retained in the crystals formed from the solution. Cytotoxicity studies on Vero cells revealed the crystals to be extremely biocompatible. These fluorescent crystals are extremely well suited for biomedical and optoelectronic applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼