RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Numerical Study on Ultimate Deformation and Resistance Capacity of Bolted T-Stub Connection

        Ghazanfar Ali Anwar,Florea Dinu,Munir Ahmed 한국강구조학회 2019 International Journal of Steel Structures Vol.19 No.3

        Disproportionate or progressive collapse is a phenomenon in which entire structure or large part of it collapses because of the local failure of a structure. Resistance to such progressive collapse depends on continuity between elements and ductility of the connections. The ductility of commonly used bolted end plate connections may depend on the T-stub component of the connection. The aim of this paper is to study the behaviour of T-stub components of beam to column end plate bolted connections under large deformation demands associated with column loss scenario. For this purpose, a parametric study is carried out to evaluate the ultimate strength and deformation capacity considering two parameters i.e. distance between the bolts and endplate thickness. Based on the experimental data, numerical model has been validated and employed in a parametric numerical study aimed at improving the response under large deformation demands. The study indicate signifi cant role of bolts in development of catenary forces since the ultimate tensile capacity of T-stub after undergoing large deformation in a ductile failure mode was controlled by the failure of the bolts. Parametric study reveals much higher bolt force in comparison with displacement controlled induced axial force in the T-stub indicating failure of the bolts at much lower applied axial force.

      • KCI등재

        Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings

        Yue Zheng,You Dong,Bo Che,Ghazanfar Ali Anwar 국제구조공학회 2019 Smart Structures and Systems, An International Jou Vol.24 No.1

        Residual drifts after an earthquake can incur huge repair costs and might need to replace the infrastructure because of its non-reparability. Proper functioning of bridges is also essential in the aftermath of an earthquake. In order to mitigate pounding and unseating damage of bridges subjected to earthquakes, a self-adaptive Ni-Ti shape memory alloy (SMA)-cable-based frictional sliding bearing (SMAFSB) is proposed considering self-adaptive centering, high energy dissipation, better fatigue, and corrosion resistance from SMA-cable component. The developed novel bearing is associated with the properties of modularity, replaceability, and earthquake isolation capacity, which could reduce the repair time and increase the resilience of highway bridges. To evaluate the super-elasticity of the SMA-cable, pseudo-static tests and numerical simulation on the SMA-cable specimens with a diameter of 7 mm are conducted and one dimensional (1D) constitutive hysteretic model of the SMAFSB is developed considering the effects of gap, self-centering, and high energy dissipation. Two types of the SMAFSB (i.e., movable and fixed SMAFSBs) are applied to a two-span continuous reinforced concrete (RC) bridge. The seismic vulnerabilities of the RC bridge, utilizing movable SMAFSB with the constant gap size of 60 mm and the fixed SMAFSBs with different gap sizes (e.g., 0, 30, and 60 mm), are assessed at component and system levels, respectively. It can be observed that the fixed SMAFSB with a gap of 30 mm gained the most retrofitting effect among the three cases.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼