RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Modeling and preparation of practical optical filters

        Muhammad H. Asghar,Muhammad Shoaib,Frank Placido,Shahzad Naseem 한국물리학회 2009 Current Applied Physics Vol.9 No.5

        Multilayer bandpass and bandstop filters have been produced using electron beam evaporation. Initially bandstop filter is modeled with non absorbing zinc sulphide (ZnS) and zinc selenide (ZnSe). When the absorption data was incorporated for the said materials significant absorption was observed at shorter wavelengths of the spectral band restricting the practical usage of the filter. ZnS and ZnSe were then replaced by dispersive silicon dioxide (SiO2), tantalum penta oxide (Ta2O5) and titanium dioxide (TiO2) along with their absorption and the filters are optimized to get desired bandpass and bandstop data. Bandpass and bandstop filters with desired performance were experimentally characterized with two combinations SiO2/Ta2O5/glass and SiO2/TiO2/glass. The measured average transmission for both combination (bandpass) in the pass band was about 92% with T < 1% in the stop band. Slightly narrow bandwidth was observed for SiO2/TiO2/glass as compared to SiO2/Ta2O5/glass which is attributed to layers densification. Similarly Tavg ≽ 80% was achieved for two combinations of bandstop filters with T < 0.1% in the stop band. The structure and surface morphology of the prepared filters were characterized by X-ray diffraction and scanning electron microscopy. XRD analysis reveals amorphous structure. SEM analysis also reveals that the layers are compact and have good surface quality. Multilayer bandpass and bandstop filters have been produced using electron beam evaporation. Initially bandstop filter is modeled with non absorbing zinc sulphide (ZnS) and zinc selenide (ZnSe). When the absorption data was incorporated for the said materials significant absorption was observed at shorter wavelengths of the spectral band restricting the practical usage of the filter. ZnS and ZnSe were then replaced by dispersive silicon dioxide (SiO2), tantalum penta oxide (Ta2O5) and titanium dioxide (TiO2) along with their absorption and the filters are optimized to get desired bandpass and bandstop data. Bandpass and bandstop filters with desired performance were experimentally characterized with two combinations SiO2/Ta2O5/glass and SiO2/TiO2/glass. The measured average transmission for both combination (bandpass) in the pass band was about 92% with T < 1% in the stop band. Slightly narrow bandwidth was observed for SiO2/TiO2/glass as compared to SiO2/Ta2O5/glass which is attributed to layers densification. Similarly Tavg ≽ 80% was achieved for two combinations of bandstop filters with T < 0.1% in the stop band. The structure and surface morphology of the prepared filters were characterized by X-ray diffraction and scanning electron microscopy. XRD analysis reveals amorphous structure. SEM analysis also reveals that the layers are compact and have good surface quality.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼