RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads

        Piccardo, Giuseppe,Tubino, Federica Techno-Press 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.44 No.5

        The dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads is analysed. The non-dimensional form of the motion equation of a beam crossed by a moving harmonic load is solved through a perturbation technique based on a two-scale temporal expansion, which permits a straightforward interpretation of the analytical solution. The dynamic response is expressed through a harmonic function slowly modulated in time, and the maximum dynamic response is identified with the maximum of the slow-varying amplitude. In case of ideal Euler-Bernoulli beams with elastic rotational springs at the support points, starting from analytical expressions for eigenfunctions, closed form solutions for the time-history of the dynamic response and for its maximum value are provided. Two dynamic factors are discussed: the Dynamic Amplification Factor, function of the non-dimensional speed parameter and of the structural damping ratio, and the Transition Deamplification Factor, function of the sole ratio between the two non-dimensional parameters. The influence of the involved parameters on the dynamic amplification is discussed within a general framework. The proposed procedure appears effective also in assessing the maximum response of real bridges characterized by numerically-estimated mode shapes, without requiring burdensome step-by-step dynamic analyses.

      • KCI등재

        Dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads

        Giuseppe Piccardo,Federica Tubino 국제구조공학회 2012 Structural Engineering and Mechanics, An Int'l Jou Vol.44 No.5

        The dynamic response of Euler-Bernoulli beams to resonant harmonic moving loads is analysed. The non-dimensional form of the motion equation of a beam crossed by a moving harmonic load is solved through a perturbation technique based on a two-scale temporal expansion, which permits a straightforward interpretation of the analytical solution. The dynamic response is expressed through a harmonic function slowly modulated in time, and the maximum dynamic response is identified with the maximum of the slow-varying amplitude. In case of ideal Euler-Bernoulli beams with elastic rotational springs at the support points, starting from analytical expressions for eigenfunctions, closed form solutions for the time-history of the dynamic response and for its maximum value are provided. Two dynamic factors are discussed: the Dynamic Amplification Factor, function of the non-dimensional speed parameter and of the structural damping ratio, and the Transition Deamplification Factor, function of the sole ratio between the two non-dimensional parameters. The influence of the involved parameters on the dynamic amplification is discussed within a general framework. The proposed procedure appears effective also in assessing the maximum response of real bridges characterized by numerically-estimated mode shapes, without requiring burdensome step-by-step dynamic analyses.

      • SCIESCOPUS

        Proper orthogonal decomposition in wind engineering - Part 1: A state-of-the-art and some prospects

        Solari, Giovanni,Carassale, Luigi,Tubino, Federica Techno-Press 2007 Wind and Structures, An International Journal (WAS Vol.10 No.2

        The Proper Orthogonal Decomposition (POD) is a statistical method particularly suitable and versatile for dealing with many problems concerning wind engineering and several other scientific and humanist fields. POD represents a random process as a linear combination of deterministic functions, the POD modes, modulated by uncorrelated random coefficients, the principal components. It owes its popularity to the property that only few terms of the series are usually needed to capture the most energetic coherent structures of the process, and a link often exists between each dominant mode and the main mechanisms of the phenomenon. For this reason, POD modes are normally used to identify low-dimensional subspaces appropriate for the construction of reduced models. This paper provides a state-of-the-art and some prospects on POD, with special regard to its framework and applications in wind engineering. A wide bibliography is also reported.

      • KCI등재

        Proper orthogonal decomposition in wind engineering. Part 1: A state-of-the-art and some prospects

        Giovanni Solari,Luigi Carassale,Federica Tubino 한국풍공학회 2007 Wind and Structures, An International Journal (WAS Vol.10 No.2

        The Proper Orthogonal Decomposition (POD) is a statistical method particularly suitable and versatile for dealing with many problems concerning wind engineering and several other scientific and humanist fields. POD represents a random process as a linear combination of deterministic functions, the POD modes, modulated by uncorrelated random coefficients, the principal components. It owes its popularity to the property that only few terms of the series are usually needed to capture the most energetic coherent structures of the process, and a link often exists between each dominant mode and the main mechanisms of the phenomenon. For this reason, POD modes are normally used to identify low-dimensional subspaces appropriate for the construction of reduced models. This paper provides a state-of-the-art and some prospects on POD, with special regard to its framework and applications in wind engineering. A wide bibliography is also reported.

      • KCI등재

        Proper orthogonal decomposition in wind engineering. Part 2: Theoretical aspects and some applications

        Luigi Carassale,Giovanni Solari,Federica Tubino 한국풍공학회 2007 Wind and Structures, An International Journal (WAS Vol.10 No.2

        Few mathematical methods attracted theoretical and applied researches, both in the scientific and humanist fields, as the Proper Orthogonal Decomposition (POD) made throughout the last century. However, most of these fields often developed POD in autonomous ways and with different names, discovering more and more times what other scholars already knew in different sectors. This situation originated a broad band of methods and applications, whose collation requires working out a comprehensive viewpoint on the representation problem for random quantities. Based on these premises, this paper provides and discusses the theoretical foundations of POD in a homogeneous framework, emphasising the link between its general position and formulation and its prevalent use in wind engineering. Referring to this framework, some applications recently developed at the University of Genoa are shown and revised. General remarks and some prospects are finally drawn.

      • SCIESCOPUS

        Proper orthogonal decomposition in wind engineering - Part 2: Theoretical aspects and some applications

        Carassale, Luigi,Solari, Giovanni,Tubino, Federica Techno-Press 2007 Wind and Structures, An International Journal (WAS Vol.10 No.2

        Few mathematical methods attracted theoretical and applied researches, both in the scientific and humanist fields, as the Proper Orthogonal Decomposition (POD) made throughout the last century. However, most of these fields often developed POD in autonomous ways and with different names, discovering more and more times what other scholars already knew in different sectors. This situation originated a broad band of methods and applications, whose collation requires working out a comprehensive viewpoint on the representation problem for random quantities. Based on these premises, this paper provides and discusses the theoretical foundations of POD in a homogeneous framework, emphasising the link between its general position and formulation and its prevalent use in wind engineering. Referring to this framework, some applications recently developed at the University of Genoa are shown and revised. General remarks and some prospects are finally drawn.

      • SCIESCOPUS

        Experimental investigation of the aeroelastic behavior of a complex prismatic element

        Nguyen, Cung Huy,Freda, Andrea,Solari, Giovanni,Tubino, Federica Techno-Press 2015 Wind and Structures, An International Journal (WAS Vol.20 No.5

        Lighting poles and antenna masts are typically high, slender and light structures. Moreover, they are often characterized by distributed eccentricities that make very complex their shape. Experience teaches that this structural type frequently suffers severe damage and even collapses due to wind actions. To understand and interpret the aerodynamic and aeroelastic behavior of lighting poles and antenna masts, this paper presents the results of static and aeroelastic wind tunnel tests carried out on a complex prismatic element representing a segment of the shaft of such structures. Static tests are aimed at determining the aerodynamic coefficients and the Strouhal number of the test element cross-section; the former are used to evaluate the critical conditions for galloping occurrence based on quasi-steady theory; the latter provides the critical conditions for vortex-induced vibrations. Aeroelastic tests are aimed at reproducing the real behavior of the test element and at verifying the validity and reliability of quasi-steady theory. The galloping hysteresis phenomenon is identified through aeroelastic experiments conducted on increasing and decreasing the mean wind velocity.

      • KCI등재

        Experimental investigation of the aeroelastic behavior of a complex prismatic element

        Cung Huy Nguyen,Andrea Freda,Giovanni Solari,Federica Tubino 한국풍공학회 2015 Wind and Structures, An International Journal (WAS Vol.20 No.5

        Lighting poles and antenna masts are typically high, slender and light structures. Moreover, they are often characterized by distributed eccentricities that make very complex their shape. Experience teaches that this structural type frequently suffers severe damage and even collapses due to wind actions. To understand and interpret the aerodynamic and aeroelastic behavior of lighting poles and antenna masts, this paper presents the results of static and aeroelastic wind tunnel tests carried out on a complex prismatic element representing a segment of the shaft of such structures. Static tests are aimed at determining the aerodynamic coefficients and the Strouhal number of the test element cross-section; the former are used to evaluate the critical conditions for galloping occurrence based on quasi-steady theory; the latter provides the critical conditions for vortex-induced vibrations. Aeroelastic tests are aimed at reproducing the real behavior of the test element and at verifying the validity and reliability of quasi-steady theory. The galloping hysteresis phenomenon is identified through aeroelastic experiments conducted on increasing and decreasing the mean wind velocity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼