RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigation of Impact of Vapor Pressure on Hybrid Streamflow Prediction Modeling

        Hasan Törehan Babacan,Ömer Yüksek,Fatih Saka 대한토목학회 2023 KSCE Journal of Civil Engineering Vol.27 No.2

        In this study, daily streamflow prediction models have been developed for Aksu Stream, in the Eastern Black Sea Basin of Turkey. To reach at this aim, hybrid artificial intelligence models have been developed, by using a new parameter, vapor pressure. Vapor pressure efficiency has been investigated for hybrid streamflow prediction models. Streamflow prediction models have been developed by using Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS), and their hybrid models. Hybridization of streamflow prediction models has been made with Wavelet Transform (WT). 10 yearly daily hydrological (discharge (m³/s)), meteorological (precipitation (mm), vapor pressure (hPA)) data, and seasonality coefficient have been used as input data of streamflow prediction models. In the selection of the best streamflow prediction model, 14 different day-delayed input combinations have been established by using 10 yearly data. As a result of the study, the highest flow forecast performance model has been determined as Wavelet Artificial Neural Network (WANN) in the study area. In the WANN model, the vapor pressure parameter was found to reduce the error by about 18.5% and improve the forecast performance. This study has concluded that, vapor pressure may be used in the future studies as a new parameter for streamflow prediction models.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼