RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Tailoring the properties of polyamide thin film membrane with layered double hydroxide nanoclay for enhancement in water separation

        Tajuddin M.H.,Yusof N.,Fajrina N.,Salleh W.N.W.,Ismail A.F.,Jaafar J.,Aziz F. 한국물리학회 2022 Current Applied Physics Vol.34 No.-

        This current paper presented a new candidate and potentially to improve the current membrane materials in water filtration process. With that, the primary materials used in this research study is layered double hydroxides (LDH) nanoclay which can be obtained from earth minerals and self-synthesized from inorganic salts were discussed thoroughly to help a better understanding of these materials. However, the current technologies of water separation were still lagging behind and ineffective especially in removal of divalent metal ions and multivalent salts. Infeasibility of reverse osmosis membrane make it not a viable option for divalent salts filtration. With that, nanofiltration (NF) membrane offered as an alternative to substitute available method. In this study, thin film nanocomposite (TFN) membranes were fabricated by incorporating layered double hydroxides (LDH) nanoclay. The LDH nanoclay with different loading ratio of 0, 0.05, 0.1, 0.15 and 0.2 were impregnated into polyamide layer on top of polysulfone substrates. The fabricated TFN were characterized in terms of physicochemical properties (SEM and FTIR) and membrane hydrophilicity (contact angle). After the addition of LDH, the morphological structures of TFN membranes were changed and the surface hydrophilicity was enhanced significantly. FESEM images displayed a typical ridge and valley morphology with nodule-like structures. As the LDH loading was increased, the contact angle decreased from 34.56◦ to 15.76◦ showing the surface hydrophilicity of membrane is improved. The separation performance of membrane was evaluated in terms of salt rejection ability by cross flow filtration system. The best performance NF membrane was found to be TFN 0.05 with high water flux and MgCl2 rejection with values of 24.18 L/m2.h and 91% respectively. This study has experimentally validated the potential of LDH materials in membrane process for improvement in water separation process.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼