RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Effect of Terminal Layouts on the Performance of Marine Terminals for Mega-containerships

        Akio IMAI,Etsuko NISHIMURA,Stratos PAPADIMITRIOU 한국항해항만학회 2006 한국항해항만학회 학술대회논문집 Vol.2 No.-

        The appearance of over 10,000 TEU containerships (so called Mega-containerships) is determined. In order to operate these ships effectively, the number of these calling ports will diminish, and then feeder ships will transport car-goes from the hub-ports where mega-containerships call to the destination ports. In the hub-ports, handling containers for mega-containerships become huger, thus it is important for terminals to deal with cargo handling as soon as possible. However, the present terminal layout might have the limitation of maximum throughput per time unit. And then the transit time at the ports become longer. Therefore, we investigate the effect on some different terminal layouts containerships on three types of terminal layouts. First one is the conventional type consisted by some linear berths, most container terminals in the world are normally this type. Second one is the indented type consisted by linear the floating type consisted by linear berths and the floating berth. On this type, mega-containerships can moor between linear and floating berths. The merits of this type are that we can also handle from both sides of mega-containerships simultaneously, and ships can go through between linear berth and floating berths. Thus it is easier for ships to moor and leave berths. Under such assumptions, we examine the numerical experiments. In most cases, the total service times on the indented type are the longest among three types, these on the floating type are the next longer. Those reasons are that these layouts have the differences of berth occupancy obtained by the time and space axes, and whether the precedence constraints of ship service order needs or not.

      • Constructing Container Shipping Networks with Empty Container Repositioning among Calling Ports

        Koichi SHINTANI,Akio IMAI,Etsuko NISHIMURA,Stratos PAPADIMITRIOU 한국항해항만학회 2006 한국항해항만학회 학술대회논문집 Vol.2 No.-

        This paper addresses the design of container liner shipping service networks by explicitly taking into account empty container repositioning and container fleet size. Two key and interrelated issues of deployments of ships and containers are usually treated separately by most existing studies on shipping network design. In this paper, both issues are considered simultaneously. The problem is formulated as a two-stage problem: the upper-problem being formulated as a Knapsack problem and the lower-problem as a Flow problem. A genetic algorithm based heuristic is developed for the problem. Through a number of numerical experiments that were conducted it was shown that the problem considering empty container repositioning provides a more insightful solution than the one without.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼