RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUS

        Automatic Modulation Recognition Using Minimum-Phase Reconstruction Coefficients and Feed-Forward Neural Network

        Sunday Ajala,Emmanuel Adetiba,Oluwaseun T. Ajayi,Abdultaofeek Abayomi,Anabi Hilary Kelechi,Joke A. Badejo,Sibusiso Moyo,Murimo Bethel Mutanga 한국정보과학회 2022 Journal of Computing Science and Engineering Vol.16 No.1

        Identification of signal waveforms is highly critical in 5G communications and other state-of-the-art radio technologies such as cognitive radios. For instance, to achieve efficient demodulation and spectrum sensing, cognitive radios need to implement automatic modulation recognition (AMR) of detected signals. Although many works have been reported in the literature on the subject, most of them have mainly focused on the additive white Gaussian noise (AWGN) channel. However, addressing the AWGN channel, only, does not sufficiently emulate real-time wireless communications. In this paper, we created datasets of six modulation schemes in GNU Radio. Wireless signal impairment issues such as center frequency offset, sample rate offset, AWGN, and multipath fading effects were applied for the dataset creation. Afterward, we developed AMR models by training different artificial neural network (ANN) architectures using real cepstrum coefficients (RCC), and minimum-phase reconstruction coefficients (MPRC) extracted from the created signals. Between these two features, MPRC features have the best performance, and the ANN architecture with Levenberg-Marquardt learning algorithm, as well as logsig and purelin activation functions in the hidden and output layers, respectively, gave the best performance of 98.7% accuracy, 100% sensitivity, and 99.33% specificity when compared with other algorithms. This model can be leveraged in cognitive radio for spectrum sensing and automatic selection of signal demodulators.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼