RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Experimental investigation of the uplift capacity of group anchor plates embedded in sand

        Emirler, Buse,Tolun, Mustafa,Laman, Mustafa Techno-Press 2016 Geomechanics & engineering Vol.11 No.5

        In this study, the uplift capacity of anchor plates embedded in sand was investigated by conducting model tests. Square shaped anchors were used in the tests and parameters such as relative density of sand, embedment ratio (H/B), spacing ratio between anchors (S/B) and anchor configuration affecting the uplift capacity were investigated. Breakout factor and group efficiency which are dimensionless parameters were used to show the results. A series of finite element analyses and analytical solutions were additionally performed to ascertain the validity of the findings from the laboratory model tests and to supplement the results of the model tests. It can be concluded that the embedment depth in dense sand soil condition is the most important parameter with respect to the other parameters as to influencing the uplift capacity of group anchors.

      • KCI등재

        Multi-objective parameter space approach based controller and add-on disturbance observer design

        Mümin Tolga Emirler,Bilin Aksun Güvenç 대한기계학회 2017 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.31 No.9

        The parameter space approach based robust PI control design methodology for DC motor speed control is proposed in this paper. The multi-objective design requirements like D-stability, phase margin and mixed sensitivity (frequency domain) bounds are mapped into the controller parameter space to determine PI controller coefficients which satisfies the desired user-defined specifications. Besides robust PI controller, an add-on disturbance observer is utilized to enhance the tracking performance and disturbance rejection of the control system. The proposed control scheme is validated by simulations and experiments. The results prove that the effectiveness of the proposed control system against uncertainties in the modeling and disturbances on the system response.

      • KCI등재

        DESIGN AND EVALUATION OF ROBUST COOPERATIVE ADAPTIVE CRUISE CONTROL SYSTEMS IN PARAMETER SPACE

        Mümin Tolga Emirler,Levent Güvenç,Bilin Aksun Güvenç 한국자동차공학회 2018 International journal of automotive technology Vol.19 No.2

        This paper is on the design of cooperative adaptive cruise control systems for automated driving of platoons of vehicles in the longitudinal direction. Longitudinal models of vehicles with simple dynamics, an uncertain first order time constant and vehicle to vehicle communication with a communication delay are used in the vehicle modeling. A robust parameter space approach is developed and applied to the design of the cooperative adaptive cruise control system. D-stability is chosen as the robust performance goal and the feedback PD controller is designed in controller parameter space to achieve this D-stability goal for a range of possible longitudinal dynamics time constants and different values of time gap. Preceding vehicle acceleration is sent to the ego vehicle using vehicle to vehicle communication and a feedforward controller is used in this inter-vehicle loop to improve performance. Simulation results of an eight vehicle platoon of heterogeneous vehicles are presented and evaluated to demonstrate the efficiency of the proposed design method. Also, the proposed method is compared with a benchmark controller and the feedback only controller. Time gap regulation and string stability are used to assess performance and the effect of the vehicle to vehicle communication frequency on control system performance is also investigated.

      • KCI등재

        DISTURBANCE OBSERVER BASED ACTIVE INDEPENDENT FRONT STEERING CONTROL FOR IMPROVING VEHICLE YAW STABILITY AND TIRE UTILIZATION

        Mümin Tolga Emirler 한국자동차공학회 2022 International journal of automotive technology Vol.23 No.3

        In the currently used steering systems, the front tires are steered dependently during turning maneuvers. During these maneuvers, the weight transfer causes the inner tire to have less vertical force compared to the outer tire. Therefore, it generates less lateral tire force and can be saturated easily in some extreme conditions. On the other hand, the outer tire can provide more lateral force due to the higher vertical force, but its potential may not be utilized because the steering of the inner and outer tires is dependent. Thus, an independent steering capability can provide potential benefits by eliminating the saturation of the inner tire and getting more lateral force from the outer tire. Therefore, an active independent front steering system is proposed by combining a yaw-rate PI controller with disturbance observers on tire forces to improve the yaw stability at the acceptable limits. The coefficients of the PI controller are calculated analytically. The cut-off frequency in the disturbance observer is determined by the robust stability analysis considering the variance in the vehicle dynamic parameters. Finally, by taking into account the tire utilization coefficient (TUC), the performance of the proposed system is compared to conventional active steering systems in CarSim simulation environment.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼