RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

        Dupont Vincent,Blanc Victor,Beck Thierry,Lainet Marc,Sciora Pierre 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.3

        In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.

      • KCI등재

        The Effects of a Korean Ginseng, GINST15, on Hypo-Pituitary-Adrenal and Oxidative Activity Induced by Intense Work Stress

        Shawn D. Flanagan,William H. DuPont,Lydia K. Caldwell,Vincent H. Hardesty,Emily C. Barnhart,Matthew K. Beeler,Emily M. Post,Jeff S. Volek,William J. Kraemer 한국식품영양과학회 2018 Journal of medicinal food Vol.21 No.1

        The effect of GINST15, an enzyme fermented ginseng supplement, on hormonal and inflammatory responses to physical stress in humans is unknown. The purpose of this investigation was to examine the constitutive and stress-induced effects of GINST15 supplement on hypo-pituitary-adrenal (HPA) and antioxidant activity in addition to muscle damage. Ten women (age: 38.7 ± 7.8 years; height: 163.81 ± 4.4 cm; body mass 76.0 ± 11.6 kg) and nine men (age: 41.2. ± 9.7 years; height: 177.4 ± 5.3 cm; body mass: 88.5 ± 5.0 kg) participated in a double-blinded, placebo-controlled, counterbalanced within-group study. Participants completed three 14-day treatment cycles with different doses (high: 960 mg; low: 160 mg; placebo: 0 mg) separated by a 1-week washout period. At the end of treatment, physical stress was imposed with intense resistance exercise work stress. Participants provided blood at rest and various time points after exercise (immediately [IP], 30 min [30], 60 min [60], 24 h [+24HR]). Cortisol (CORT), superoxide dismutase (SOD), total glutathione, nonspecific antioxidant activity, total antioxidant power (TAP), and creatine kinase were measured. GINST15 supplementation produced stress-inducible dose-dependent reductions in circulating cortisol and increased enzymatic and nonspecific antioxidant activity. Twenty-four hours after intense exercise, a high dose GINST15, a bioactive ginsenoside metabolite, significantly reduces muscle damage and HPA responses to physical stress in humans; these effects may result from increased antioxidant expression.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼