RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Incorporation of spatial autocorrelation improves soil–landform modeling at A and B horizons

        Kim, Daehyun,Š,amonil, Pavel,Jeong, Gwanyong,Tejnecký,, V&aacute,clav,Drá,bek, Ondř,ej,Hruš,ka, Jakub,Park, Soo Jin Catena Verlag 2019 Catena Vol.183 No.-

        <P><B>Abstract</B></P> <P>Research has shown that the performance of soil–landform models would improve if the effects of spatial autocorrelation were properly accounted for; however, it remains elusive whether the level of improvement would be predictable, based on the degree of spatial autocorrelation in the model variables. We evaluated this problem using 11 soil variables acquired from the A and B horizons along a hillslope of Žofínský Prales in the Czech Republic. The results showed that, with no exception, there were increases in R<SUP>2</SUP> and decreases in the Akaike information criterion (AIC), residual autocorrelation, and root-mean-square errors (RMSEs), after incorporating the spatial filters extracted by spatial eigenvector mapping into non-spatial regression models. Furthermore, the improvement of the model was positively proportional to the degree of spatial autocorrelation, inherent in the soil variables. That is, there were strikingly linear and significant relationships, in which strongly autocorrelated soil variables (i.e., having a high Moran's <I>I</I> value) exhibited greater increases in R<SUP>2</SUP> and decreases in AIC, residual autocorrelation, and RMSEs than their more weakly autocorrelated counterparts. These findings indicate that the degree of spatial autocorrelation present in soil properties can serve as a direct indicator for how much the performance of a traditional non-spatial soil–landform model would be enhanced, by explicitly taking into consideration the presence of spatial autocorrelation. More generally, our results potentially imply that the need for and benefit from incorporating spatial effects in geopedological modeling proportionally increases as the soil property of interest is more spatially structured (i.e., landform variables alone cannot capture soil spatial variability).</P> <P><B>Highlights</B></P> <P> <UL> <LI> Soil spatial variability was modeled using landform variables in a temperate forest. </LI> <LI> In this regression, we included spatial filters as additional independent variables. </LI> <LI> This inclusion improved the performance of the original non-spatial approach. </LI> <LI> Spatial autocorrelation of soil variables predicted the degree of such improvement. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼