RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Seismic behavior of SFRC shear wall with CFST columns

        Danying Gao,Pei-Bo You,Li-Juan Zhang,Huan-Huan Yan 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.28 No.5

        The use of reinforced concrete (RC) shear wall with concrete filled steel tube (CFST) columns and steel fiber reinforced concrete (SFRC) shear wall has aroused widespread attention in recent years. A new shear wall, named SFRC shear wall with CFST columns, is proposed in this paper, which makes use of CFST column and SFRC shear wall. Six SFRC shear wall with CFST columns specimens were tested under cyclic loading. The effects of test parameters including steel fiber volume fraction and concrete strength on the failure mode, strength, ductility, rigidity and dissipated energy of shear wall specimens were investigated. The results showed that all tested shear wall specimens exhibited a distinct shear failure mode. Steel fibers could effectively control the crack width and improve the distribution of cracks. The load carrying and energy dissipation capacities of specimens increased with the increase of steel fiber volume fraction and concrete strength, whilst the ductility of specimens increased with the increase of steel fiber volume fraction and the decrease of concrete strength.

      • KCI등재

        A multi-resolution analysis based finite element model updating method for damage identification

        Xin Zhang,Danying Gao,Yang Liu 국제구조공학회 2015 Smart Structures and Systems, An International Jou Vol.16 No.1

        A novel finite element (FE) model updating method based on multi-resolution analysis (MRA) is proposed. The true stiffness of the FE model is considered as the superposition of two pieces of stiffness information of different resolutions: the pre-defined stiffness information and updating stiffness information. While the resolution of former is solely decided by the meshing density of the FE model, the resolution of latter is decided by the limited information obtained from the experiment. The latter resolution is considerably lower than the former. Second generation wavelet is adopted to describe the updating stiffness information in the framework of MRA. This updating stiffness in MRA is realized at low level of resolution, therefore, needs less number of updating parameters. The efficiency of the optimization process is thus enhanced. The proposed method is suitable for the identification of multiple irregular cracks and performs well in capturing the global features of the structural damage. After the global features are identified, a refinement process proposed in the paper can be carried out to improve the performance of the MRA of the updating information. The effectiveness of the method is verified by numerical simulations of a box girder and the experiment of a three-span continues pre-stressed concrete bridge. It is shown that the proposed method corresponds well to the global features of the structural damage and is stable against the perturbation of modal parameters and small variations of the damage.

      • KCI등재

        Pullout Behaviour of Different Types of Steel Fibres Embedded in Magnesium Phosphate Cementitious Matrix

        Hu Feng,M. Neaz Sheikh,Muhammad N. S. Hadi,Lu Feng,Danying Gao,Jun Zhao 한국콘크리트학회 2019 International Journal of Concrete Structures and M Vol.13 No.4

        A series of pullout tests were conducted to investigate the interface bond properties of seven types of steel fibres embedded in the magnesium phosphate cementitious matrix. The micromorphology of the interface transition zone between MPC and different types of fibres was examined by scanning electron microscope. Test results showed that smaller diameter steel fibres with brass coating surface achieved higher average bond strength, higher pullout energy per unit volume and a higher ratio of material use. The end hook deformation provided the mechanical bond locally whereas the deformation along the length of fibre provided the mechanical bond distributed along the fibre. The failure mode and group effect of steel fibres were also investigated and reported.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼