RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A 12-MHz CW RFQ for the AEBL Project

        D. L. Schrage,P. N. Ostroumov,A. Barcikowski,D. Fallin,A. A. Kolomiets 한국물리학회 2008 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.52 No.3

        The Advanced Exotic Beam Laboratory (AEBL) at the Argonne National Laboratory (ANL) will provide a research facility for studies of nuclear phenomena by using beams of short-lived isotopes for research on the nature of nucleonic matter and the origin of the elements, for tests of the Standard Model, for applications in medicine and industry, and for other applied physics research. The proposed design of the AEBL driver linac evolved from the Rare Isotope Accelerator (RIA) project. The AEBL will be a CW linac capable of accelerating uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. The AEBL facility also includes a post-accelerator which is designed for acceleration of radioactive ions with charge-to-mass ratios in the range from 1/238 to 1/6. Very low charge-state ions can be most eciently bunched and accelerated by using normally-conducting radio-frequency quadrupole (RFQ) for the rst few MV of the post accelerator. A two-meter long, 12-MHz CW RFQ was designed, built, and tested in the late 1990s as the rst section of a three-section RFQ [18]. This RFQ achieved inter-electrode voltages of 110 kV CW (the peak surface eld was 15 MV/m) and accelerated beams with A/q as large as 132 (132Xe). The AEBL requires a similar RFQ for the post-acceleration of singly-charged unstable nuclides. Our plan is to replace the vanes of this RFQ with a design that incorporates a stronger focusing and that will achieve a higher peak surface eld (16 MV/m) at 82.2-kV inter-vane voltage. The objectives of this project are 1. to conrm the possibility of a low injection energy of 0.4 keV/u which signicantly reduces the voltage required for a high-voltage deck; 2. to test the highest possible peak surface eld on the RFQ electrodes designed for the lowest frequency of 12 MHz compared to existing RFQs worldwide; 3. to provide a technical base for the design of a post-accelerator for the future Advanced Exotic Beam Facility. At the present time, the design is complete, and the fabrication of the 12 MHz RFQ is scheduled to commence in October 2007 with testing planned in 2008. The physics and engineering design of the RFQ is discussed. The Advanced Exotic Beam Laboratory (AEBL) at the Argonne National Laboratory (ANL) will provide a research facility for studies of nuclear phenomena by using beams of short-lived isotopes for research on the nature of nucleonic matter and the origin of the elements, for tests of the Standard Model, for applications in medicine and industry, and for other applied physics research. The proposed design of the AEBL driver linac evolved from the Rare Isotope Accelerator (RIA) project. The AEBL will be a CW linac capable of accelerating uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. The AEBL facility also includes a post-accelerator which is designed for acceleration of radioactive ions with charge-to-mass ratios in the range from 1/238 to 1/6. Very low charge-state ions can be most eciently bunched and accelerated by using normally-conducting radio-frequency quadrupole (RFQ) for the rst few MV of the post accelerator. A two-meter long, 12-MHz CW RFQ was designed, built, and tested in the late 1990s as the rst section of a three-section RFQ [18]. This RFQ achieved inter-electrode voltages of 110 kV CW (the peak surface eld was 15 MV/m) and accelerated beams with A/q as large as 132 (132Xe). The AEBL requires a similar RFQ for the post-acceleration of singly-charged unstable nuclides. Our plan is to replace the vanes of this RFQ with a design that incorporates a stronger focusing and that will achieve a higher peak surface eld (16 MV/m) at 82.2-kV inter-vane voltage. The objectives of this project are 1. to conrm the possibility of a low injection energy of 0.4 keV/u which signicantly reduces the voltage required for a high-voltage deck; 2. to test the highest possible peak surface eld on the RFQ electrodes designed for the lowest frequency of 12 MHz compared to existing RFQs worldwide; 3. to provide a technical base for the design of a post-accelerator for the future Advanced Exotic Beam Facility. At the present time, the design is complete, and the fabrication of the 12 MHz RFQ is scheduled to commence in October 2007 with testing planned in 2008. The physics and engineering design of the RFQ is discussed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼