RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A New Method for Estimating High-Frequency Radar Error Using Data from Central San Francisco Bay

        Maxwell Hubbard,Donald Barrick,Newell Garfield,Jim Pettigrew,Carter Ohlmann,Matthew Gough 한국해양과학기술원 2013 Ocean science journal Vol.48 No.1

        This study offers a new method for estimating High- Frequency (HF) radar surface current velocity error in data comparisons with other types of instrumentation. A new method is needed in order to remove the zero-mean random spatial and temporal fluctuations present in surface-current measurements from all sensors. Conventional methods for calculating radar error when comparing with another instrument have included their root mean square differences and scatter plots that provide correlation coefficient and slope/intercept of the regression line. It seems that a meaningful estimate of radar error should attempt to remove both sensors' zero mean random fluctuations, inasmuch as possible. We offer and compare a method that does this. The method was tested on data collected in the Central San Francisco Bay, where GPS surface-drifter deployments were conducted within the coverage of four 42 MHz radars over six days in October of 2008. Drifters were continuously deployed in these areas over the sampling days, providing 525 usable drifter measurements. Drifter and radar measurements were averaged into thirty-minute time bins. The three-day long-term averages from the sampling areas were then subtracted from the thirtyminute averages to remove biases associated with comparisons done with short, disjoint time-sample periods. These were then used to develop methods that give radar error or bias after the random fluctuations have been removed. Results for error estimates in this study are commensurate with others where random fluctuations have been filtered, suggesting they are valid. The estimated error for the radars in the SF Bay is low, ranging from -7.57 cm/s to 0.59 cm/s.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼