RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Component Modelling of Flexible End-plate Connections in Fire

        Ying Hu,Ian Burgess,Roger Plank,Buick Davison 한국강구조학회 2009 International Journal of Steel Structures Vol.9 No.1

        This paper describes a component-based model for simulating the behaviour of flexible end-plate connections between beams and columns in steel framed structures in fire conditions. In this method, a simple steel connection was split into a number of active components for which mechanical properties are represented by non-linear springs. The behaviour of a steel connection is then determined by assembling the individual behaviour for each active component into a spring model. The component model presented in this paper is capable of predicting the behaviour of steel connections under varied loading conditions. It is also capable of predicting the tying resistance and critical components of failure for steel connections in fire. Compared with experimental test data, a good correlation with the simplified model has been achieved and this method, combined with finite element modelling, may be used to examine the performance of simple steel connections in fire conditions. This paper describes a component-based model for simulating the behaviour of flexible end-plate connections between beams and columns in steel framed structures in fire conditions. In this method, a simple steel connection was split into a number of active components for which mechanical properties are represented by non-linear springs. The behaviour of a steel connection is then determined by assembling the individual behaviour for each active component into a spring model. The component model presented in this paper is capable of predicting the behaviour of steel connections under varied loading conditions. It is also capable of predicting the tying resistance and critical components of failure for steel connections in fire. Compared with experimental test data, a good correlation with the simplified model has been achieved and this method, combined with finite element modelling, may be used to examine the performance of simple steel connections in fire conditions.

      • A Simplified Steel Beam-To-Column Connection Modelling Approach and Influence of Connection Ductility on Frame Behaviour in Fire

        Shi, Ruoxi,Huang, Shan-Shan,Davison, Buick Council on Tall Building and Urban Habitat Korea 2018 International journal of high-rise buildings Vol.7 No.4

        A simplified spring connection modelling approach for steel flush endplate beam-to-column connections in fire has been developed to enable realistic behaviour of connections to be incorporated into full-scale frame analyses at elevated temperature. Due to its simplicity and reliability, the proposed approach permits full-scale high-temperature frame analysis to be conducted without high computational cost. The proposed simplified spring connection modelling approach has been used to investigate the influence of connection ductility (both axial and rotational) on frame behaviour in fire. 2D steel and 3D composite frames with a range of beam spans were modelled to aid the understanding of the differences in frame response in fire where the beam-to-column connections have different axial and rotational ductility assumptions. The modelling results highlight that adopting the conventional rigid or pinned connection assumptions does not permit the axial forces acting on the connections to be accurately predicted, since the axial ductility of the connection is completely neglected when the rotational ductility is either fully restrained or free. By accounting for realistic axial and rotational ductilities of beam-to-column connections, the frame response in fire can be predicted more accurately, which is advantageous in performance-based structural fire engineering design.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼