RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Particle trajectory and orientation evolution of ellipsoidal particles in bounded shear flow of Giesekus fluids

        Bingrui Liu,Jianzhong Lin,Xiaoke Ku,Zhaosheng Yu 한국유변학회 2021 Korea-Australia rheology journal Vol.33 No.4

        The migration of ellipsoidal particles in bounded shear flow of Giesekus fluids is studied numerically using the direct forcing/fictitious domain method for the Weissenberg number ranging from 0.1 to 3.0, the mobility parameter α which quantifies the shear-thinning effect ranging from 0.1 to 0.7. The model and numerical method are validated by comparing the present results with available theoretical and numerical results in other literatures. The results show that the trajectory of particles depends on their initial orientation and vertical position, and the particle migration can be roughly classified into returning and passing pattern. The values of initial vertical position of particle corresponding to the separatrix between the returning and passing pattern decrease with increasing Weissenberg number regardless of the initial orientation of particle, and the shear thinning has the opposite effect. The evolution of particle orientation depends on the initial particle orientation. For the particles whose initial orientation is parallel to the shear plane, the particle rotates with the semi-major axis as radius in the shear plane. For the particles whose initial orientation is perpendicular to the shear plane, the particle rotates with the semi-minor axis as radius. For the particles whose initial orientation has a certain angle with the shear plane, the particle rotates with the vorticity axis and the orientation vector is gradually close to the vorticity vector. The evolution of the particle orientation becomes slow with increasing Wi whether it is in passing behavior or in returning behavior.

      • SCIESCOPUS

        A comprehensive evaluation method study for dam safety

        Jia, Fan,Yang, Meng,Liu, Bingrui,Wang, Jianlei,Gao, Jiaorong,Su, Huaizhi,Zhao, Erfeng Techno-Press 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.63 No.5

        According to the multi-index system of dam safety assessment and the standard of safety, a comprehensive evaluation model for dam safety based on a cloud model is established to determine the basic probability assignment of the Dempster-Shafer theory. The Dempster-Shafer theory is improved to solve the high conflict problems via fusion calculation. Compared with the traditional Dempster-Shafer theory, the application is more extensive and the result is more reasonable. The uncertainty model of dam safety multi-index comprehensive evaluation is applied according to the two theories above. The rationality and feasibility of the model are verified through application to the safety evaluation of a practical arch dam.

      • KCI등재

        A comprehensive evaluation method study for dam safety

        Fan Jia,Meng Yang,Bingrui Liu,Jianlei Wang,Jiaorong Gao,Huaizhi Su,Erfeng Zhao 국제구조공학회 2017 Structural Engineering and Mechanics, An Int'l Jou Vol.63 No.5

        According to the multi-index system of dam safety assessment and the standard of safety, a comprehensive evaluation model for dam safety based on a cloud model is established to determine the basic probability assignment of the Dempster-Shafer theory. The Dempster-Shafer theory is improved to solve the high conflict problems via fusion calculation. Compared with the traditional Dempster-Shafer theory, the application is more extensive and the result is more reasonable. The uncertainty model of dam safety multi-index comprehensive evaluation is applied according to the two theories above. The rationality and feasibility of the model are verified through application to the safety evaluation of a practical arch dam.

      • KCI등재

        Sparse Polynomial Chaotic Expansion for Uncertainty Analysis of Tunnel Stability

        Hongbo Zhao,Meng Wang,Bingrui Chen,Shaojun Liu 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.9

        Uncertainty is an intrinsic property of rock engineering because of the complicated geology conditions, rock failure mechanism ambiguity, and the nonlinear mechanical behavior of surrounding rock mass. We developed a novel framework to handle the uncertainty by combing the Sparse polynomial chaotic expansion (SPCE), numerical model, and reliability method. The SPCE model was used to map the complex relationship between the response of the surrounding rock mass and its uncertainty. The first-order reliability method (FORM) evaluated the reliability index and failure probability. Based on the SPCE model and FORM, a simple global optimization algorithm (SHGO) seeks design points and corresponding reliability indexes. A circular tunnel verified the developed framework with a close-form solution. The reliability index, design point, and failure probability were in excellent agreement with the FORM and Monte Carlo simulation. This indicated that the SPCE model could be used as a surrogate model for the analytical solution to approximate the tunnel response (including deformation and size of the plastic zone). Then, the developed framework was employed in a horseshoe tunnel by combing with the numerical model. The results further proved that the developed framework is feasible and effective for handling uncertainty in rock engineering. Furthermore, the developed framework is effective, efficient, and accurate for reliability analysis and provides a helpful tool to approximate the response of rock structure to avoid the time-consuming numerical model in practical rock engineering.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼