RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Simple synthesis of biogenic PdAg bimetallic nanostructures for an ultra-sensitive electrochemical sensor for sensitive determination of uric acid

        Mallikarjuna, K.,Veera Manohara Reddy, Y.,Sravani, Bathinapatla,Madhavi, G.,Kim, Haekyoung,Agarwal, Shilpi,Gupta, Vinod Kumar Elsevier 2018 Journal of Electroanalytical Chemistry Vol.822 No.-

        <P><B>Abstract</B></P> <P>Bimetallic nanomaterials have potential catalytic behaviour in hydrogenation, clean- energy production, catalysis and sensors due to their great stability, loftier activity unique electrical and chemical properties. Herein, we prepared PdAg bimetallic nanoparticles synthesized by using fungal extracted aqueous method, which is environmentally friendly cost-effective and simple procedure. The fabricated PdAg bimetallic nanoparticles were investigated by small area electron diffraction (SAED), transmission electron microscopy (TEM) X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. The electrochemical response of uric acid (UA) at Pd-Ag/CPE was studied in 0.1 M phosphate buffer solution at various pH, concentration and scan rate was investigated. Compare to Bare CPE, the PdAg nanocomposite modified electrode displayed the highest electrocatalytic activity for the detection of UA A linear response in the range of 4.69–273 nM with remarkable detection limit of 5.543 nM (C<SUB>DL</SUB> = 3ϭ/M) and quantification limit of 16.64 nM (C<SUB>QL</SUB> = 10ϭ/M) was obtained. The established nanoparticles (PdAg) embedded with carbon paste electrode (Pd-Ag/CPE) makes a good analytical tool for the sensing of UA in the biological and pharmaceutical samples.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Pd-Ag bimetallic nanoparticles based electrochemical sensor was fabricated </LI> <LI> uric acid is determined at nanomolar levels </LI> <LI> The practical feasibility of the developed sensor was successfully was performed </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>Electrochemical investigation of uric acid at biogenic PdAg bimetallic nanostructures modified carbon paste electrode.</P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Facile Preparation of Ionic Liquid-coated Copper Nanowire-modified Carbon Paste Electrode for Electrochemical Detection of Etilefrine Drug

        Sada Venkateswarlu,Manthrapudi Venu,Yenegu Veera Manohara Reddy,Bathinapatla Sravani,코두루말리카주나,윤민영,G. Madhavi 대한화학회 2019 Bulletin of the Korean Chemical Society Vol.40 No.6

        A carbon paste electrode (CPE)/Cu nanowire (Cu NW)/poly(1-ethyl-3-methylimidazolium methyl sulfate) based sensor was successfully fabricated by the electro-polymerization of 1-ethyl-3-methylimidazolium methyl sulfate (EMIMS) onto the surface of Cu nanowires-modified carbon paste electrode. The morphology and chemical nature of Cu NWs were characterized by FTIR, FE-SEM, TEM, XRD techniques. The CPE/CuNWs/poly(EMIMS) showed an electrocatalytic activity toward the determination of etilefrine hydrochloride (ET-HCl) in the 0.11?M buffer solution of phosphate at pH 7.0. The CPE/CuNWs/poly(EMIMS) showed an excellent limit of detection (LOD) 2.3 ?M over the linear dynamic range of 0.1 to 1.3 ?M. The prepared CPE/CuNWs/poly(EMIMS) has exhibited high stability, good sensitivity, and low detection limit for the determination of ET-HCl. The validity of this advanced method was checked by applying in the blood plasma samples, with satisfactory results. This novel CPE/CuNWs/poly(EMIMS) can be an attractive material for the applications in biomedical and sensor fields.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼