RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Design of reverse osmosis networks for multiple freshwater production

        Yanyue Lu,Anping Liao,Yangdong Hu 한국화학공학회 2013 Korean Journal of Chemical Engineering Vol.30 No.5

        Reverse osmosis (RO) desalination, which produces multiple freshwater from seawater, has been studied in this work. An optimization method based on process synthesis has been applied to design the RO system. First, a simplified superstructure that contains all the feasible design for this desalination problem has been presented. In this structural representation, the stream split ratios and the logical expressions of stream mixing were employed, which can make the mathematical model easy to handle. Then, the membrane separation units employing the spiral wound reverse osmosis elements were described by using a pressure vessel model, which takes into account the pressure drop and the concentration changes in the membrane channel. The optimum design problem can be formulated as a mixedinteger non-linear programming (MINLP) problem, which minimizes the total annualized cost of the RO system. The cost equation relating the capital and operating cost to the design variables, as well as the structural variables, has been introduced in the objective function. The problem solution includes the optimal streams distribution, the optimal system structure and the operating conditions. The design method could also be used for the optimal selection of membrane element type in each stage and the optimal number of membrane elements in each pressure vessel. The effectiveness of this design methodology has been demonstrated by solving a desalination case. The comparisons with common industrial approach indicated that the integrative RO system proposed in this work is more economical, which can lead to significant capital cost and energy saving and provide an economically attractive desalination scheme.

      • KCI등재

        Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater

        Xinling Xie,Jie Huang,Youquan Zhang,Zhangfa Tong,Anping Liao,Xingkui Guo,Zuzeng Qin,Zhanhu Guo 한국화학공학회 2019 Korean Journal of Chemical Engineering Vol.36 No.2

        Aminated cassava residue magnetic microspheres (ACRPM) were synthesized via an inverse emulsion method by using chemically modified cassava residue as a crude material, and acrylic acid (AA), acrylamide (AM), and methyl methacrylate (MMA) as monomers and a polyethylene glycol/methanol system (PEG/MeOH) as the porogen. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption and vibrating sample magnetometry (VSM) were used to characterize the ACRPM. The results indicated that amino groups were grafted to the cassava residue magnetic microspheres, and the Fe3O4 nanoparticles were encapsulated in the microspheres. After porogen was added, the particle size of the ACRPM decreased from 16.5 μm to 150 nm with a pore volume of 0.05510m3/g, and the specific surface area of the ACRPM increased from 3.02 to 12.34m2/g. The ACRPM were superparamagnetic, and the saturation magnetization was 9.8 emu/g. The maximum adsorption capacity of Pb(II) on the ACRPM was 390mg/g. The ACRPM exhibited a large specific surface area and provided many adsorption sites for metal ion adsorption, which favored a high adsorption capacity. Additionally, the Pb(II) adsorption process was fitted to pseudo-second-order kinetic and Langmuir isothermal adsorption models. This suggests that the Pb(II) adsorption process was dominated by a chemical reaction process and that chemisorption was the rate-controlling step during the Pb(II) removal process. In addition, the adsorbent exhibited good stability after six consecutive reuses.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼