RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Minimization of wind load on setback tall building using multiobjective optimization procedure

        Amlan Kumar Bairagi,Sujit Kumar Dalui 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.35 No.3

        This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

      • Aerodynamic modification of setback distance at half height of the tall building to minimize the wind effect

        Amlan Kumar Bairagi,Sujit Kumar Dalui 한국풍공학회 2022 Wind and Structures, An International Journal (WAS Vol.35 No.3

        The present study focuses on aerodynamic parameters behaviors and control on the single and double side setback building models at the buildings mid-height. The study is conducted by computational fluid dynamics (CFD) simulation. This study estimates the face wise pressure coefficient on single side setback buildings with a setback range of 20%-50% and double side setback buildings with setbacks ranging from 10%-25%. The polynomial fitted graphs from CFD data predict the Cp on different setback model faces within permissible limit ±13% error. The efficient model obtained according to the minimum drag, lift, and moment consideration for along and across wind conditions. The study guides the building tributary area doesn’t control the drag, lift, and moment on setback type buildings. The setback distance takes a crucial role in that. The 20% double side setback model is highly efficient to regulate the moment for both along and across wind conditions. It reduces 17.5% compared to the 20% single side setback and 14% moment compared to the 10% double side setback models. The double side setback building is more efficient to control 4.2% moment than the single side setback building .

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼