RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Activated sludge treatment by electro-Fenton process: Parameter optimization and degradation mechanism

        Ali Reza Rahmani,Davood.Nematollahi,Ghasem Azarian,Kazem Godini,Zohreh Berizi 한국화학공학회 2015 Korean Journal of Chemical Engineering Vol.32 No.8

        This study was conducted to evaluate the mineralization of activated sludge (MAS) by a facile and environmentally friendly electro-Fenton process (EFP). The effects of initial H2O2 concentration, pH value, applied current density and operating time on MAS through determining the removal rate of chemical oxygen demand (COD) and total coliform (TC) were studied. 72% of COD was removed by indirect oxidation double-mediated based on the electro- generation of hydroxyl radical and active chlorine, under the following optimum conditions: 127mmol L−1 of hydrogen peroxide, pH=3.0, 10 mA cm−2 of DC current, 120min of operating time, and 0.22mol L−1 of NaCl as the supporting electrolyte. Only in 10 min and pH 3.0 approximately 100% of TC was removed. The findings indicated that EFP can be applied efficiently for MAS by selecting appropriate operating conditions. The bottom line is that the process is entirely effective owing to the application of green oxidants (hydroxyl radical and active chlorine) and lack of being influenced by environmental situations, which can be introduced as an alternative to current conventional methods.

      • KCI등재

        Design and Synthesis of New 1,4-Dihydropyridines Containing 4(5)- chloro-5(4)-imidazolyl Substituent as a Novel Calcium Channel Blocker

        Maryam Iman,Ali Reza Nematollahi,Ahmad Rerza Dehpoor,Abbas Shafiee,Asghar Davood 대한약학회 2011 Archives of Pharmacal Research Vol.34 No.9

        New analogues of nifedipine, in which the ortho-nitro phenyl group at position 4 has been replaced by 4(5)-chloro-5(4)-imidazolyl substituent and which are able to interact with the receptor by hydrogen binding were designed, synthesized, and evaluated as calcium channel antagonists. The designed dihydropyridines were synthesized using the Hantzsch condensation and evaluated as calcium channel antagonists using the high K+ contraction of guineapig ileal longitudinal smooth muscle. A docking study was performed using the AutoDock4 program, and QSAR equations were obtained using multilinear regression. Our computational studies indicated that the oxygen of the ester (O10) and the N3' of the imidazole ring form a hydrogen bonding interaction with the NH of HIS 363 and NH of LYS354, respectively, and that the sum of the BEHp5 and RDF075p are the most significant descriptors. The results of calcium channel antagonist evaluation demonstrated that increasing the chain length in C3 and C5 ester substituents increased activity. The most potent compound was the bis-phenylpropyl ester (5l) derivative, in that it was more active than the reference drug nifedipine and that the bis-phenylethyl ester (5k) derivative had comparable activity with nifedipine. The present research revealed that the 4(5)-chloro-5(4)-imidazolyl moiety is a bioisoster of o-nitrophenyl in nifedipine and provided novel dihydropyridines with more activity as calcium channel antagonists.

      • KCI등재

        Degradation of azo dye C.I. Acid Red 18 using an eco-friendly and continuous electrochemical process

        Ghasem Azarian,Ali Reza Rahmani,Kazem Godini,Davood.Nematollahi,Sima Maleki 한국화학공학회 2016 Korean Journal of Chemical Engineering Vol.33 No.2

        Continuous anodic oxidation of azo dye C.I. Acid Red 18 by using PbO2 electrode in aqueous solution was studied. To reach the best conditions of the process, the influence of various operating parameters such as pH, current density, hydraulic retention time (HRT) and dye concentration on the removal rate of chemical oxygen demand (COD) and color, as indexes showing the amount of efficiency, was investigated. The findings showed that, respectively, 99.9% and 80.0% of the dye and COD were removed (at optimized conditions). Mineralization current efficiency results indicated that at the beginning of the reaction mineralization occurred quickly at a low current density, whereas at high amounts the rate of mineralization the efficiency decreased. At the optimum conditions, the majority of COD was removed only with 38.2 kWh/kg COD of energy consumption in 120 min. By controlling HO•/dye concentration ratio via the parameters adjustment, particularly HRT and current density, this system can treat Acid Red 18 well even at high concentrations. Furthermore, the voltammetry study illustrated that electroactive intermediates created during the process were mineralized at current density of 8.6mA/cm2.

      • KCI등재

        Electrodegradation of tetracycline using stainless steel net electrodes: Screening of main effective parameters and interactions by means of a two-level factorial design

        Maryam Foroughi,Hamid Reza Soheil Arezoomand,Ali Reza Rahmani,Ghorban Asgari,Davood Nematollahi,Kaan Yetilmezsoy,Mohammad Reza Samarghandi 한국화학공학회 2017 Korean Journal of Chemical Engineering Vol.34 No.11

        Performance of electrodegradation process using stainless steel net electrodes was explored for removal of tetracycline (TC) from synthetic wastewater in a laboratory batch study. Main effects of various operating parameters, such as initial TC concentration (20 and 100mg/L), reaction pH (3.0 and 9.0), current density (4.1 and 17.1mA/cm2), agitation speed (250 and 750 rpm), and electrolysis time (20, 50, and 80 min), and their interactions on the TC removal efficiency, were optimized by means of a five-factor and two-level factorial experimental design methodology. The significance of responses obtained from the proposed design (sixteen experimental runs under batch mode conditions) was statistically evaluated by preparing a Pareto chart, half-normal probability plot, and plots of main effects and their interactions (herein referred to as Factions) within the framework of the analysis of variance (ANOVA). The statistical results corroborated with 95% certainty that TC concentration, pH, and current density showed the largest effects (absolute values) on the TC removal efficiency. Besides the most effective Factions, a sodium sulfate (used as supporting electrolyte) dose of 1 g/200 cc was determined as the optimum value for the studied process. Under the conditions of an initial TC concentration=20 mg/L, a reaction pH=3.0, current density=17.1mA/cm2, an agitation speed=250 rpm, and an electrolysis time=20min, about 70% of TC could be successfully removed from the simulated wastewater. Findings of this experimental study clearly confirmed the applicability of the electrodegradation process for the removal of a broad spectrum antibacterial agent like TC, and also demonstrated the effectiveness of the factorial design methodology before transferring the obtained experimental knowledge for a full-scale facility.

      • KCI등재

        Synthesis and Docking Studies of New 1,4-Dihydropyridines Containing 4-(5)-Chloro-2-ethyl-5-(4)-Imidazolyl Substituent as Novel Calcium Channel Agonist

        Asghar Davood,Maryam Iman,Abbas Shafiee,Ali reza Nematollahi 대한약학회 2009 Archives of Pharmacal Research Vol.32 No.4

        1,4-Dihydropyridines have been recognized as calcium channel agonist. Three new analogues of Bay K8644 in which the ortho trifluromethyl phenyl group at position 4 is replaced by the 4-(5)-Chloro-2-ethyl-5-(4)-imidazolyl substituent, were designed and synthesized as calcium channel agonist. For this propose, the structures of designed compounds were drawn by HYPERCHEM program. Conformations of the compounds were optimized through semiempirical method followed by PM3 calculation. Then the crystalin stucture of L-type calcium channel was obtained from the Protein Data Bank (PDB) server. Docking calculations were carried out using Auto-Dock.4 program. The good interaction of our 1,4-DHP derivatives showed that they can be as possible calcium channel agonist agents. Finally compounds were synthesized according to a modified Hantzsch condensation procedure.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼