RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Cavitating nozzle flows in micro- and minichannels under the effect of turbulence

        Morteza Ghorbani,Mehmet Yildiz,Devrim Gozuacik,Ali Kosar 대한기계학회 2016 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.30 No.6

        The cavitation phenomenon inside micro- and minichannel configurations was numerically investigated. The simulations for each channel were performed at different upstream pressures varying from 1 to 15 MPa. Two microchannel configurations with inner diameters of 152 and 254 μm and two minichannel configurations with inner diameters of 504 and 762 μm were simulated. To validate the numerical approach, micro-jet impingement from a microchannel with an inner diameter of 152 μm was first simulated at different Reynolds numbers. Then, the mixture model was used to model the multiphase flow inside the channels. The results of this study present major differences in the cavitating flows between the micro- and miniscale channels and show that the pressure profile and vapor phase distribution exhibit different features. The static pressure drops to negative values (tensile stress) in microchannels, while the minimum static pressure in minichannels is found to be equal to vapor saturation pressure, and higher velocity magnitudes especially at the outlet are visible in the microchannels. It is shown that for higher upstream pressures, the cavitating flow extends over the length of the micro/minichannel, thereby increasing the possibility of collapse at the outlet. The effect of energy associated with turbulence was investigated at high Reynolds numbers for both micro/minichannels and its impact was analyzed using wall shear stress, turbulence kinetic energy and mean velocity at various locations of the micro/minichannels.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼