RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

        Thakare, Akshay A.,Siddique, Salman,Singh, Amardeep,Gupta, Trilok,Chaudhary, Sandeep Techno-Press 2022 Advances in concrete construction Vol.13 No.6

        The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

      • KCI등재

        Enhancing Ductile-mode Cutting of Calcium Fluoride Single Crystals with Solidified Coating

        Yan Jin Lee,Jing Yi Chong,Akshay Chaudhari,Hao Wang 한국정밀공학회 2020 International Journal of Precision Engineering and Vol.7 No.6

        Positive improvements have been observed during machining brittle materials under high hydrostatic pressure, but the techniques to achieve such desirable effects often utilize complex and expensive equipment or tools. This work presents a cost-efficient method to achieve ductile-mode machining of brittle materials at higher uncut chip thicknesses, by the application of a solidified coating on workpiece surface before a machining process. Orthogonal microcutting experiments were conducted on calcium fluoride single crystals oriented with the (111) plane and an increase in critical uncut chip thickness was observed with the solidified coating. The primary cause has been resolved to be mechanical-related and results in a stabilized microcutting process. Transmission electron microscopy provided evidence of slip deformation occurring in the machined subsurface regions and a layer thickness of subsurface damages reduced by ~ 45% under the influence of the solidified coating. In addition, erratic fluctuations in direction of the resultant machining force were subdued with the applied coating, which is proved to be caused by the compressive stresses induced from the sandwiching of the CaF2 material between the tool and the solidified coating. The proposed technique successfully reduces the cost and pollution in the fabrication process of optical components from the use of coolant in an ultraprecision machining process to the time consumed by eliminating the subsurface damage with abrasive slurries in post-machining polishing.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼