RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 of the mammalian type I and type II gonadotropin-releasing hormone (GnRH) receptors determine differential ligand selectivity to GnRH-I and GnRH-II.

        Li, Jian Hua,Choe, Han,Wang, Ai Fen,Maiti, Kaushik,Wang, Chengbing,Salam, Abdus,Chun, Sang Young,Lee, Won-Kyo,Kim, Kyungjin,Kwon, Hyuk Bang,Seong, Jae Young American Society for Pharmacology and Experimental 2005 Molecular pharmacology Vol.67 No.4

        <P>Mammalian type I and II gonadotropin-releasing hormone (GnRH) receptors (GnRHRs) show differential ligand preference for GnRH-I and GnRH-II, respectively. Using a variety of chimeric receptors based on green monkey GnRHR-2 (gmGnRHR-2), a representative type II GnRHR, and rat GnRHR, a representative type I GnRHR, this study elucidated specific domains responsible for this ligand selectivity. A chimeric gmGnRHR-2 with the extracellular loop 3 (EL3) and EL3-proximal transmembrane helix 7 (TMH7) of rat GnRHR showed a great increase in ligand sensitivity to GnRH-I but not to GnRH-II. Point-mutation studies indicate that four amino acids, Leu/Phe(7.38), Leu/Phe(7.43), Ala/Pro(7.46), and Pro/Cys(7.47) in TMH7 are critical for ligand selectivity as well as receptor conformation. Furthermore, a combinatory mutation (Pro(7.31)-Pro(7.32)-Ser(7.33) motif to Ser-Glu-Pro in EL3 and Leu(7.38), Leu(7.43), Ala(7.46), and Pro(7.47) to those of rat GnRHR) in gmGnRH-2 exhibited an approximately 500-fold increased sensitivity to GnRH-I, indicating that these residues are critical for discriminating GnRH-II from GnRH-I. [Trp(7)]GnRH-I and [Trp(8)]GnRH-I but not [His(5)]GnRH-I exhibit a higher potency in activating wild-type gmGnRHR-2 than native GnRH-I, indicating that amino acids at positions 7 and 8 of GnRHs are more important than position 5 for differential recognition by type I and type II GnRHRs. As a whole, these data suggest a molecular coevolution of ligands and their receptors and facilitate the understanding of the molecular interaction between GnRHs and their cognate receptors.</P>

      • Microarray Analysis of Long Non-coding RNA Expression Profile Associated with 5-Fluorouracil-Based Chemoradiation Resistance in Colorectal Cancer Cells

        Xiong, Wei,Jiang, Yong-Xin,Ai, Yi-Qin,Liu, Shan,Wu, Xing-Rao,Cui, Jian-Guo,Qin, Ji-Yong,Liu, Yan,Xia, Yao-Xiong,Ju, Yun-He,He, Wen-Jie,Wang, Yong,Li, Yun-Fen,Hou, Yu,Wang, Li,Li, Wen-Hui Asian Pacific Journal of Cancer Prevention 2015 Asian Pacific journal of cancer prevention Vol.16 No.8

        Background: Preoperative 5-fluorouracil (5-FU)-based chemoradiotherapy is a standard treatment for locally advanced colorectal cancer (CRC). However, CRC cells often develop chemoradiation resistance (CRR). Recent studies have shown that long non-coding RNA (lncRNA) plays critical roles in a myriad of biological processes and human diseases, as well as chemotherapy resistance. Since the roles of lncRNAs in 5-FU-based CRR in human CRC cells remain unknown, they were investigated in this study. Materials and Methods: A 5-FU-based concurrent CRR cell model was established using human CRC cell line HCT116. Microarray expression profiling of lncRNAs and mRNAs was undertaken in parental HCT116 and 5-FU-based CRR cell lines. Results: In total, 2,662 differentially expressed lncRNAs and 2,398 mRNAs were identified in 5-FU-based CRR HCT116 cells when compared with those in parental HCT116. Moreover, 6 lncRNAs and 6 mRNAs found to be differentially expressed were validated by quantitative real time PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated involvement of many, such as Jak-STAT, PI3K-Akt and NF-kappa B signaling pathways. To better understand the molecular basis of 5-FU-based CRR in CRC cells, correlated expression networks were constructed based on 8 intergenic lncRNAs and their nearby coding genes. Conclusions: Changes in lncRNA expression are involved in 5-FU-based CRR in CRC cells. These findings may provide novel insight for the prognosis and prediction of response to therapy in CRC patients.

      • KCI등재

        Crocin alleviates neurotoxicity induced by bupivacaine in SH-SY5Y cells with inhibition of PI3K/AKT signaling

        Lin Lili,Chen Zhen,Li Jun,Peng Jianye,Wang Jian,Feng Mingjun,Liu Tiancheng,Zhang Mengli,Wu Xian,Ai Fen,Shen Caijie 한국유전학회 2024 Genes & Genomics Vol.46 No.1

        Background Bupivacaine, a common local anesthetic, can cause neurotoxicity and permanent neurological disorders. Crocin has been widely reported as a potential neuroprotective agent in neural injury models. Objective The aim of this study was to investigate the role and regulatory mechanism of crocin underlying bupivacaine-induced neurotoxicity. Method Human neuroblastoma SH-SY5Y cells were treated with bupivacaine and/or crocin for 24 h, followed by detecting cell viability using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The effect of crocin or bupivacaine on SH-SY5Y cell proliferation was measured by Ki67 immunofluorescence assay. The levels of apoptosis-related proteins and the markers in the PI3K/Akt signaling pathway were examined using western blot analysis. The activities of caspase 3, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were tested using respective commercial assay kits. Flow cytometry analysis was executed for detecting SH-SY5Y cell apoptosis. Result Crocin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells. Meanwhile, crocin inhibited SH-SY5Y cell apoptosis induced by bupivacaine via repressing the activity of caspase-3, reducing Bax expression, and elevating Bcl-2 expression. Moreover, crocin mitigated oxidative stress in SH-SY5Y cells by increasing the content of CAT, SOD, GSH-Px and reducing the content of MDA. Additionally, crocin protected against bupivacaine-induced dephosphorylation of Akt and GSK-3β. The protective effects of crocin against bupivacaine-induced neurotoxicity in SH-SY5Y cells were counteracted by the Akt inhibitor. Conclusion These results suggested that crocin may exert a neuroprotective function by promoting cell proliferation and suppressing apoptosis and oxidative stress in SH-SY5Y cells. Thus, crocin might become a promising drug for the treatment of bupivacaine-induced neurotoxicity. Background Bupivacaine, a common local anesthetic, can cause neurotoxicity and permanent neurological disorders. Crocin has been widely reported as a potential neuroprotective agent in neural injury models. Objective The aim of this study was to investigate the role and regulatory mechanism of crocin underlying bupivacaine-induced neurotoxicity. Method Human neuroblastoma SH-SY5Y cells were treated with bupivacaine and/or crocin for 24 h, followed by detecting cell viability using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. The effect of crocin or bupivacaine on SH-SY5Y cell proliferation was measured by Ki67 immunofluorescence assay. The levels of apoptosis-related proteins and the markers in the PI3K/Akt signaling pathway were examined using western blot analysis. The activities of caspase 3, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were tested using respective commercial assay kits. Flow cytometry analysis was executed for detecting SH-SY5Y cell apoptosis. Result Crocin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells. Meanwhile, crocin inhibited SH-SY5Y cell apoptosis induced by bupivacaine via repressing the activity of caspase-3, reducing Bax expression, and elevating Bcl-2 expression. Moreover, crocin mitigated oxidative stress in SH-SY5Y cells by increasing the content of CAT, SOD, GSH-Px and reducing the content of MDA. Additionally, crocin protected against bupivacaine-induced dephosphorylation of Akt and GSK-3β. The protective effects of crocin against bupivacaine-induced neurotoxicity in SH-SY5Y cells were counteracted by the Akt inhibitor. Conclusion These results suggested that crocin may exert a neuroprotective function by promoting cell proliferation and suppressing apoptosis and oxidative stress in SH-SY5Y cells. Thus, crocin might become a promising drug for the treatment of bupivacaine-induced neurotoxicity.

      • KCI등재

        GnRH-II Analogs for Selective Activation and Inhibition of Non-Mammalian and Type-II Mammalian GnRH Receptors

        Jae Young Seong,Kaushik Maiti,Jian Hua Li,Ai Fen Wang,Sujata Acharjee,Wang Phil Kim,임욱빈,권혁방 한국분자세포생물학회 2003 Molecules and cells Vol.16 No.2

        ecently, we identified three types of non-mammalian gonadotropin-releasing hormone receptors (GnRHR) in the bullfrog (designated bfGnRHR-1-3), and a mammalian type-II GnRHR in green monkey cell lines (denoted gmGnRHR-2). All these receptors responded better to GnRH-II than GnRH-I, while mammalian type-I GnRHR showed greater sensitivity to GnRH-I than GnRH-II. In the present study, we designed new GnRH-II analogs and examined whether they acti- vated or inhibited non-mammalian and mammalian type-II GnRHRs. [D-Ala 6 ]GnRH-II, with D-Ala substi- tuted for Gly 6 in GnRH-II, increased inositol phos- phate (IP) production in cells stably expressing non- mammalian GnRHRs more effectively than native GnRH-II. However, it exhibited lower activity for mammalian type-I GnRHR than GnRH-I itself. Trptorelix-1, a GnRH-II antagonist, inhibited GnRH- induced IP production in cells expressing non- mammalian GnRHRs more effectively than Cetrorelix, a GnRH-I antagonist. Trptorelix-1, however, had lower potency for mammalian type-I GnRHR than Cetrorelix. Ligand-receptor binding assays revealed that [D-Ala 6 ]GnRH-II and Trptorelix-1 have higher affinities for non-mammalian GnRHRs but lower af- finities for mammalian type-I GnRHR than GnRH-II and Cetrorelix, respectively. Moreover, [D-Ala 6 ]GnRH- II and Trptorelix-1 had a higher affinity for gmGnRHR-2 than GnRH-II and Cetrorelix, respec- tively. These results indicate that [D-Ala 6 ]GnRH-II and Trptorelix-1 are highly effective agonist and antagonist, respectively, for non-mammalian and type- II mammalian GnRHRs

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼